
SHADOW COUPLINGS
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Abstract. A classical result of Strassen asserts that given probabilities µ, ν on the real line
which are in convex order, there exists a martingale coupling with these marginals, i.e. a
random vector (X1, X2) such that X1 ∼ µ, X2 ∼ ν and E[X2 |X1] = X1. Remarkably, it is a
non trivial problem to construct particular solutions to this problem. Based on the concept
of shadow for measures in convex order, we introduce a family of such martingale cou-
plings, each of which admits several characterizations in terms of optimality properties /

geometry of the support set / representation through a Skorokhod embedding. As a par-
ticular element of this family we recover the (left-)curtain martingale transport, which has
recently been studied [11, 22, 15, 9] and which can be viewed as a martingale analogue
of the classical monotone rearrangement. As another canonical element of this family we
identify a martingale coupling that resembles the usual product coupling and appears as an
optimizer in the general transport problem recently introduced by Gozlan et al. In addi-
tion, this coupling provides an explicit example of a Lipschitz kernel, shedding new light
on Kellerer’s proof of the existence of Markov martingales with specified marginals.

Keywords: Strassen’s theorem, Kellerer’s theorem, peacocks, (martingale) optimal trans-
port, general transport costs, Skorokhod embedding

1. Introduction

1.1. Outline. Given Polish spaces X,Y , a measure π on X × Y with marginals µ and ν is
called transport plan1 from µ to ν or a coupling of µ and ν. Let Π(µ, ν) be the space of
transport plans of marginals µ and ν. We will usually consider probability measures µ, ν
on the real line having first moments. Our primary interest lies in the set of martingale
transport plans which is defined as

ΠM(µ, ν) = {π = Law(X,Y) ∈ Π(µ, ν), E(Y |X) = X}

= {π ∈ Π(µ, ν) :
∫

y dπx,· = x for µ-a.e. x}.

Here the constraint E(Y |X) = X means that E(Y |X = x) = x for µ-almost every x ∈ R, while
(πx,·)x∈R denotes the disintegration of π with respect to µ, i.e. the family of conditional
laws. By Jensen’s inequality, the existence of a martingale transport plan π ∈ ΠM(µ, ν)
implies that µ, ν are in the convex order µ �C ν, i.e.

∫
φ dµ ≤

∫
φ dν for every convex

φ : R → R. Conversely Strassen [47], established that ΠM(µ, ν) is nonempty whenever
µ, ν are in convex order. While Strassen derived the existence of martingale transport plans
as a rather direct consequence of the Hahn-Banach theorem, it seems harder to provide
elementary / natural constructions of such martingale transport plans.
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With the aim of defining a systematic martingale coupling we [11] introduced the (left-)
curtain coupling πlc which can be seen as a martingale analogue of the monotone rearrange-
ment coupling (alias the quantile coupling). An explicit description of the curtain coupling
is provided when µ is finitely supported in [11, Section 2]. Another construction using
differential equations is given by Henry-Labordère and Touzi [22] for sufficiently regular
distributions. Moreover they establish that the curtain coupling is relevant for the pricing
of variance swaps. According to [33] the operation of coupling µ and ν through the cur-
tain coupling is continuous so that left-curtain couplings for general measures µ and ν can
be approximated using either of the two mentioned constructions, see [33, Remark 2.18].
Hobson and Norgilas [29, 30] deepen the connection to mathematical finance, in particular
they use the curtain coupling to obtain robust bounds for the arbitrage free prices of Amer-
ican put options. In [9], a link to the field of Skorokhod embedding is established. Nutz
and Stebegg provide extensions to a supermartingale setup [40] and, together with Tan, to
a multi-period setup [41]. The continuous time setting was explored in [34] and [21] as
a limit of the multi-period setting but with a slightly different approach (with respect to
[41]).

In this article we reconsider the particular role of the left-curtain coupling as a dis-
tinguished coupling in the set ΠM(µ, ν). We will define an infinite family of martingale
couplings. Roughly speaking, the (left-)curtain coupling will then be recovered as one
extreme element of the this family, while at the other end of the spectrum we will obtain
a new and rather different type of systematic coupling that we shall call sunset coupling
πsun. Whereas the curtain coupling shares a number of properties with the monotone re-
arrangement coupling in (classical optimal transport), the sunset coupling can be seen as
the martingale analogue of the product coupling µ × ν. In view of this it is natural that
πsun does not appear as an optimizer of the martingale version of the transport problem.
However, we shall see in Theorem 1.1 and Section 5 below that it enjoys some optimality
properties of a different type. A further particular property is that πsun yields a concrete ex-
ample of a martingale transport plan which has the Lipschitz(-Markov) property (see §1.3
in this introduction and Section 4).

Before diving into the technical details, we try to convey an intuitive description of the
subsequent constructions.
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Figure 1. Curtain closing from left to right; sun setting from top to bottom.

We start by describing the curtain coupling. All particles of µ are transported to ν,
spreading their mass due to the martingale property. Starting with the left most particle
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and moving to the right, each particle greedily tries to spread its mass as little as possible,
given the portion of ν that still needs to be filled, see the upper part of Figure 1. Rather
than ‘closing the curtain from left to right’ as in Figure 1, we could obtain variants of the
curtain coupling by ‘closing the curtain from right to left’, ‘from the middle to boundary’
(see Subsections 3.1.1, 3.1.3, respectively), etc.

Another (and more interesting) variation is to prioritise the mass in µ not from left to
right, but rather from top to bottom. This leads to the sunset coupling depicted in the lower
part of Figure 1.

Our first aim will be to rigorously describe the class of martingale couplings arising
from constructions as hinted here. Subsequently we will describe applications and links to
other themes of research.

1.2. Main Theorem. We write λ for the Lebesgue measure on the unit interval and as-
sume that µ �C ν. Throughout lift or source2 of µ will refer to a probability µ̂ ∈ Π(λ, µ)
that will serve as a parameter in the construction of a general version of the left-curtain
coupling. The set of lifted martingale transport plans is

Π̂M(µ̂, ν) :=
{
π̂ ∈ Π(µ̂, ν) :

∫
y dπ̂u,x,· = x for µ̂-a.e. (u, x)

}
,

where (π̂u,x,·)(x,u)∈R×[0,1] denotes the disintegration of π̂ with respect to µ̂.

“lifted” θ̂ ∈ P
(
[0, 1] × Rd)

disintegration

{{

θ̂[0,u],·(A) = θ̂([0, u] × A)

��

θ̂u,· ∈ P
(
Rd), u ∈ [0, 1]

integration

;;

primitive
..
θ̂[0,u],· ∈ M

(
Rd), u ∈ [0, 1]

__

derivative
nn

We shall use two further ways to denote the objects µ̂ ∈ Π(λ, µ) ⊆ P([0, 1] × R) and
π̂ ∈ Π̂M(µ̂, ν) ⊆ P([0, 1] × R2), respectively: given a measure θ̂ on [0, 1] × Rd (where
d = 1, 2 so that θ stands for µ or π), with proj[0,1](θ̂) = λ, we write

(1) (θ̂u,·)u∈[0,1] for the (λ-a.s. unique) disintegration3 of θ̂ with respect to λ.
(2) (θ̂[0,u],·)u∈[0,1] for the family of measures defined for every u ∈ [0, 1] by

θ̂[0,u],·(A) = θ̂([0, u] × A) =

∫ u

0
θ̂s,·(A) ds(1)

where A ⊆ Rd.
Our main result is the following.

Theorem 1.1. Let µ, ν be real probability measures in convex order and µ̂ ∈ Π(λ, µ). There
exists a unique π̂ ∈ Π̂M(µ̂, ν) satisfying any, and then all of the following properties:

2In the recent preprint [14] which considers a continuum time version of the present construction, also the
term parametrization is used.

3We write θ̂u,· instead of the more commonly used θ̂u to emphasize that the disintegration is understood with
respect to the first coordinate. In fact, we will also consider disintegrations with respect to to other coordinates
subsequently.
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(1) π̂ minimizes

γ̂ 7→

∫
(1 − u)

√
1 + y2 dγ̂(u, x, y)(2)

on the set Π̂M(µ̂, ν).
(2) π̂ = Law(U, B0, Bτ), where U has uniform law on [0, 1], (Bt) is one dimensional

Brownian motion, Law(U, B0) = µ̂ and τ is the hitting time of the process t 7→
(U, Bt) into a left barrier (i.e. a Borel set R ⊆ [0, 1] × R such that (u, x) ∈ R, v ≤ u
implies (v, x) ∈ R).

(3) π̂(Γ̂) = 1 for a Borel set Γ̂ ⊆ [0, 1]×R×R which is monotone in the sense that for
all s, t, x, x′, y−, y+, y′

s < t, (s, x, y−), (s, x, y+), (t, x′, y′) ∈ Γ⇒ y′ < ]y−, y+[.

(4) For all u ∈ [0, 1], the projection of π̂[0,u],·,· onto the second coordinate is the shadow
of µ̂[0,u],· onto the measure ν.

We add some comments to this result:
• In (1) the cost c : (u, x, y) 7→ (1 − u)

√
1 + y2 can be replaced by any positive

c(u, x, y) = φ(u)ψ(y) where φ ≥ 0 is strictly decreasing and ψ ≥ 0 is strictly convex
and the minimum over Π̂M(µ̂, ν) is finite. More generally the same conclusions
holds for a nonnegative c with ∂(3)

uyyc < 0 in a weak sense. Alternative assumptions
to c ≥ 0 are that

∫
|φ| dλ,

∫
|ψ(y)| dν < ∞ or that c(x, y) ≥ A + Bx + Cy.

• In the setting of (2), π̂ ∈ Π̂M(µ̂, ν) implies that the martingale (Bt∧τ)t≥0 is uniformly
integrable, see Proposition 5.3 below.

• To make sense of the last point, note that if µ′(A) ≤ µ(A) for every Borel set4 and
µ �C ν, then the set {ν′ : µ′ �C ν′ and ν′ ≤ ν} is nonempty and has a smallest
element S ν(µ′) with respect to �C , the shadow of µ′ onto the measure ν (cf. [11,
Lemma 4.6] / Definition 2.1 below). Intuitively speaking, among all measures
ν′ ≤ ν which are larger than µ′ in convex order, S ν(µ′) is the most concentrated
one.

We call the unique element of Π̂M(µ̂, ν) characterized in Theorem 1.1 the lifted shadow
coupling with lift (or source) µ̂. Its projection onto the two last coordinates is an element π
of ΠM(µ, ν) that we call shadow coupling of µ and ν associated to the source µ̂. Note that
π is π̂[0,1],·,· in the terminology introduced in Equation (1).

Figure 2 illustrates Theorem 1.1. Left part: the measure µ̂ has first marginal λ (as any
lifted measure µ̂), and second marginal µ as depicted on the left side of the figure. On the
vertical line with abscissa u starts a 1-dimensional Brownian motion (represented on the
figure with double arrows for a possible starting position (u, x) in the support of µ̂) which
will hit the set R at a position (u, y) where it is stopped. The measure π is the joint law in
R2 of the starting position x and the end position y. The measure ν̂ is the law of the end
position (u, y), where the starting position is (u, x) distributed according to µ̂(du, dx).

Middle part: the measure ν̂u,·(dy) is the law of the end position for a Brownian motion
starting on the vertical line according to µ̂u,·(dx).

Right part: when considering starting positions (u′, x) with u′ ≤ u for a reference
u ∈ [0, 1], the measure π̂ restricted to A = [0, u]×R×R has projections (proju′ )#π̂|A = λ|[0,u],
(projx)#π̂|A = µ̂[0,u],· and (projy)#π̂|A = ν̂[0,u],·. Moreover (projx,y)#π̂|A = π̂[0,u],·,·. To
(roughly) read π̂[0,u],·,· on the picture, we start from the horizontal line of coordinate x,

4This relation is denoted by µ′ �+ µ later.
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Figure 2.

consider the mass of µ̂ when disintegrated until value u (the measure µ̂·,x|[0,u]), start the
usual vertical Brownian motions until they hit the barrier and project them back to the
vertical axis (that, here, can properly be called y-axis). We have described the transition
kernel implied by π̂[0,u],·,·, from x distributed according to µ̂[0,u],· to the target (probability)
measure that we may denote by π̂[0,u],x,·.

If the source µ̂ is concentrated on the graph of a 1-1 function T : [0, 1] → R there is
an obvious correspondence between elements of ΠM(µ, ν) and Π̂M(µ̂, ν). In particular the
optimality property stated in Theorem 1.1 (1) then translates to optimality properties for
the martingale version of the transport problem; early papers to investigate such problems
include [28, 8, 18, 16, 13, 27, 15, 5, 12]. For general sources, the shadow coupling does
not exhibit particular optimality properties for the martingale transport problem. However,
it is characterized by a general optimality problem in the sense of Gozlan et al. [20]. We
shall discuss this in Section 5 below.

Natural choices of sources lead to natural martingale couplings of shadow type. We
shall be particularly interested in the cases where µ̂ is either the quantile or the product
coupling of λ and µ:

• The quantile coupling (or monotone rearrangement coupling, see §2.1 and §3.1)
of λ and µ is the unique coupling µ̂ whose support is the graph of an increasing
function. Considering the corresponding lifted shadow coupling in Π̂M(µ̂, ν), we
recover the left-curtain coupling introduced in [11]. We shall henceforth denote
this coupling by πlc.

Notably most of the results established for πlc in [11] are a particular conse-
quence of Theorem 1.1 (cf. Remark 5.6).

• The sunset coupling πsun is based on the product source µ̂ = λ × µ, i.e. the inde-
pendent coupling of λ and µ.

Note that the sources of the above martingale couplings are the two most natural cou-
pling methods for elements in the space without constraint Π(µ, ν). Looking at the measure
µ as the hypograph of its unit density function, we note that the curves (µ̂[0,u],·)u∈[0,1] and
(µ̂u,·)u∈[0,1] reminds the reader of a curtain closed from the left in the first case and from the
bottom in the second case. This further motivates the names curtain coupling and sunset
coupling. The lifted versions are naturally denoted by π̂lc, π̂sun and called lifted curtain
coupling, lifted sunset coupling respectively.
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Figure 3. From quantile to curtain; from product to sunset.

1.3. Other systematic methods to define a martingale transport. A main theme of this
paper is to explore systematic methods (µ, ν) 7→ π ∈ ΠM(µ, ν) to select a special martingale
transport plan for the pairs (µ, ν) with µ �C ν. By “special” we mean here an element π
that can be uniquely characterized with respect to one or several mathematical features /

theories. This problem has a rich history and is still being written. Basically, the type of so-
lutions may be into two categories. The most classical is the one of Skorokhod embedding,
that may be summarized as follows: starting from µ stop a continuous martingale (mostly
the Brownian motion distributed like µ at time 0) so that the distribution at the stopping
time is ν. This problem admits a variety of distinct solutions, e.g. the one obtained by Rost
[45] that is particularly natural from the perspective of potential theory, the one of Root
[44], which is canonical in the sense that it has minimal variance among all stopping times
that solve the Skorokhod problem. Another celebrated solution based on recursion theory
was given by Azema-Yor [3]. We note that the original construction of Azema-Yor is re-
markably simple and explicit but restricted to the case where Brownian motion is started
at a constant. In contrast the extension to non-trivial starting laws (due to Hobson [25]) is
no longer explicit. We refer the reader to the comprehensive surveys of Obłlój [42] and
Hobson [26] on the Skorokhod problem.
The constructions that are the focus of the present paper could be considered more elemen-
tary in that their definitions do not rely on an (auxilliary) Brownian motion. Even though
computational aspects are not the topic of this paper, we believe that shadow constructions
are more adapted to concrete computations (in Section 3.1 we give some explicit formulas
when µ and ν are uniform measures). In the context of martingale optimal transport we
also mention the recent construction of Jourdain and Marghereti [31] that is particularly
useful in the context of inequalities for the usual Wasserstein distance.

1.4. Kellerer’s theorem and the sunset coupling. Kellerer’s Theorem [35] states that if
a family of measures (µt)t∈R+

satisfies s ≤ t ⇒ µs �C µt, there exists a martingale (Xt)t∈R+

with Law(Xt) = µt for every t. The martingale can moreover be supposed to be Markov
and this is, as far as we are concerned, the most spectacular achievement of this theorem.
In contemporary terms (see [23]), (µt)t∈R+

is called a peacock and (Xt)t∈R+
is a Markov

martingale associated to this peacock.
To the best of our knowledge, all proofs of Kellerer’s theorem are based on approx-

imation arguments using sequences of Markov processes. Here the obstacle is that the
Markov-property is not preserved when passing to the limit. The key insight of Kellerer
was to consider Lipschitz-Markov processes, that is Markov-processes whose transition
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kernels have the following Lipschitz property: a kernel P : x 7→ P(x) ∈ P is called Lip-
schitz (or more precisely 1-Lipschitz) if W(P(x), P(x′)) ≤ |x − x′| for all x, x′ (see (4) for
the definition of the Wasserstein-1 distance W). It is then not hard to see that the property
of being a Lipschitz-Markov process is preserved when passing to the limit in the sense of
finite-dimensional distributions.

Martingale transport plans can be seen as one step martingales and it is possible to
compose several of them to define a discrete Markov martingale. The main technical step
in Kellerer’s proof is therefore to show that given measures µ, ν in convex order there
exists a martingale transport plan π whose transition kernel P has the Lipschitz property,
see Theorem 1.3 just bellow. Accordingly, to the concept of Lipschitz kernel P we add
the one of Lipschitz martingale transport plan π. The following remark provides several
reformulations for it.

Remark 1.2. In Kellerer’s terminology [35, 36], martingale transport plans π appear as
pairs consisting of an initial measure µ and a so-called dilation P, i.e. a transition kernel
satisfying

∫
y dP(y) = x and µP = ν. Note that P(x) = πx,·, holds µ-almost surely. Thus

π is a martingale transport plan if there exists a version (π̃x,·)x∈R of (πx,·)x∈R that satisfies
W(π̃x,·, π̃x′,·) ≤ |x−x′| for every x, x′ ∈ R (Recall that x→ πx,· is apriori only µ-almost surely
defined). As explained in [32] after Definition 5, this is also equivalent to the existence of
A ⊆ R of full measure (for µ) such that W(πx,·, πx′,·) ≤ |x− x′| is satisfied for every x, x′ ∈ A.
Slightly abusing notation, we will occasionally identify martingale transport plans with
their kernels.

Theorem 1.3 (Kellerer’s key result to Kellerer’s theorem on Markov martingales). Let
µ, ν ∈ P be real probability measures in convex order. Then there exists a Lipschitz mar-
tingale transport plan π in ΠM(µ, ν), i.e. π ∈ ΠM(µ, ν) such that

W(πx,·, πx′,·) ≤ |x − x′|(3)

holds for any x, x′ in a set of µ-full measure.

Let us add that in higher dimensions d ≥ 2 Lipschitz martingale transport plans may not
exist among the elements of ΠM(µ, ν) for some pairs µ ≤ ν (see [32, Proposition 1]). As
Lipschitz kernels and their variants are the only known methods for proving the Kellerer
theorem, still to our knowledge, it is an open problem whether this theorem holds in di-
mensions greater than or equal to two.

While the various extremal martingale couplings constructed in [28, 11, 27, 15, 46] do
not have the Lipschitz property, we shall see that the sunset coupling has the Lipschitz
property. Moreover, as we will see in Section 4 it connects to Kellerer’s original proof (in
[35]) of the existence of Lipschitz kernels.

2. Preparations and construction

2.1. Concepts related to the martingale transport problem. We consider the spaceM
of positive measures on R with finite first moments. The subspace of probability measures
with finite expectations is denoted byP. In higher dimensions we denote the corresponding
spaces byM(Rd) and P(Rd). For µ, ν ∈ M, the Wasserstein-1 distance is defined by

W(µ, ν) = sup
f∈Lip(1)

∣∣∣∣∣∫ f dµ −
∫

f dν
∣∣∣∣∣(4)
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and endows (P,W) with T1, the usual topology for probability measures with finite first
moments5. In (4), the supremum is taken over all 1-Lipschitz functions f : R → R. We
also consider W (with the same definition) on the subspace mP = {µ ∈ M| µ(R) = m} ⊆ M
of measures of mass m.

According to the Kantorovich duality theorem, an alternative definition in the case µ, ν ∈
P is

W(µ, ν) = inf
(Ω,X,Y)

E(|Y − X|)(5)

where X, Y : (Ω,F ,P) → R are random variables of laws µ and ν. The infimum is taken
over all joint laws (X,Y), the probability space (Ω,F ,P) being part of the minimization
problem. Without loss of generality (Ω,F ,P) can be assumed to be ([0, 1],B, λ) where λ is
the Lebesgue measure andB theσ-algebra of Borel sets on [0, 1]. On this probability space
the quantile functions Gµ and Gν in fact realize a minimizing coupling, called quantile
coupling. In particular one has W(µ, ν) =

∫ 1
0 |Gν −Gµ|. Recall that the quantile function of

θ is defined by Gθ(u) = inf{x ∈ [−∞,∞] : θ((−∞, x]) ≥ u} as the generalized inverse of
the cumulative distribution function Fθ : x ∈ R 7→ θ((−∞, x]). Finally, an application of
Fubini’s theorem yields W(µ, ν) =

∫
R
|Fν − Fµ|.

A special choice of a 1-Lipschitz function in (4) is the function ft : x ∈ R→ |x− t| ∈ R.
Therefore if µn → µ inM, the sequence of functions uµn : t 7→

∫
ft(x) dµn(x) converges to

uµ pointwise. The converse statement also holds if all the measures have the same mass and
barycenter (see [24, Proposition 2.3] or [11, Proposition 4.2]). For µ ∈ M, the function uµ
is usually called the potential function of µ. Note that uµ is a convex function with (weak)
second derivative is 2µ.

2.2. Bijection between curves, primitive curves, and lifted measures. We elaborate on
the equivalent expressions of the lifted measures introduced in Subsection 1.2. In short, we
are representing the same mathematical object in three ways: we consider the measure θ̂
that may be µ̂ ∈ P([0, 1]×R2) or π̂ ∈ P([0, 1]×R2), the almost surely defined disintegration
(θ̂u,·)u∈[0,1], and the primitive curve (θ̂[0,u],·)u∈[0,1]. We first recall the integrability conditions.
The lifted measure θ̂ is a probability measure on [0, 1]×Rd (where d = 1 or d = 2) such that
θ̂(ρ̂) < +∞ is finite where ρ : x 7→ ‖x‖Rd and ρ̂(u, x) = ρ(x). This integrability condition
corresponds to θ̂[0,1],·(ρ) < +∞ for the primitive curve (θ̂[0,u],·)u∈[0,1] and

∫ 1
0 θ̂u,·(ρ) du < +∞

for (θ̂u,·)u∈[0,1]. The marginal condition asserts that θ̂ ∈ Π(λ, θ) for some θ ∈ P(Rd). In terms
of the primitive curve this can be expressed by asserting that θ̂[0,1],· = θ and θ̂[0,u],·(R) = u.
The equivalent condition on (θ̂u,·)u∈[0,1] is that λ-almost surely θ̂u,· ∈ P and θ =

∫ 1
0 θ̂u,· du.

Note that from a probabilistic point of view, if (U, X) is a random vector of law θ̂ with
U ∼ λ, the other representations are given by (u × Law(X|U ≤ u))u∈[0,1] and (Law(X|U =

u))u∈[0,1]. Finally the object that we will ultimately be most interested in is not the source θ̂
but θ := θ̂[0,1],· = Law(X) (in particular for θ = π where the measure in on R2).

In what follows we explain that the derivative of the primitive curve (θ̂[0,u],·)u∈[0,1] can
be considered with respect to T1, the weak topology with respect to continuous functions
which have at most linear growth. Let us start with θ̂ ∈ Π(λ, θ). We disintegrate the
measure with respect to the first marginal and obtain an a.s. uniquely determined family
(θ̂u,·)u∈[0,1] such that for almost every u, θ̂u,· ∈ P(Rd). (We can assume that the measure is

5A sequence a signed measure (µn)n converges to µ if
∫
φdµn →

∫
φdµ for every continuous function φ with

growth at most linear.
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zero for the other parameters.) Define θ̂[0,u],· for u ∈ [0, 1] by

θ̂[0,u],·(A) = θ̂([0, u] × A) =
∫ u

0 θ̂s,·(A) ds

for A ⊆ Rd Borel. Given a function f : x ∈ Rd → R with f (x)/(1 + ‖x‖) bounded, the
function s 7→ θ̂s,·( f ) is measurable and in L1([0, 1]). Hence at almost every time u ∈ [0, 1]
the function t 7→ θ̂[0,u],·( f ) =

∫ u
0 θ̂t,·( f ) dt is differentiable with derivative θ̂u,·( f ). It is

important that the set L ⊆ [0, 1] of times at which the derivative exists for all f is a Borel
set of full measure, as we will verify in the next paragraph. Before establishing this claim,
note that this permits us to define a canonical disintegration ( ˜̂θu,·)u∈[0,1]: we define the
measure ˜̂θu,· as the derivative if u ∈ L, and zero otherwise.

We turn now to the claim: let X be a countable set of functions which is dense in the
space Cc(Rd) of continuous functions with compact support and let X+ be X ∪ {ρ} where
ρ(x) = ‖x‖Rd . Let L ⊆ [0, 1] be the set such that at any time u ∈ L, θ̂u,· is a probability
measure and u 7→ θ̂[0,u],·( f ) has derivative θ̂u,·( f ) for any f ∈ X+ and note that L has full
mass. Then, as an increment h goes to zero the measure h−1(θ̂[0,u+h],· − θ̂[0,u],·) weakly
converges to θ̂u,· and as ρ is a continuous function with linear growth, convergences holds
also in T1, cf. [48, Theorem 7.12]. Thus L is a set of differentiation for any function with
finite first moment.

2.3. General description of the construction. In what follows we shortly explain the
systematic scheme to define π̂ ∈ Π̂M(µ̂, ν) when the marginals µ̂ ∈ Π(λ, µ) and ν ∈ P are
given. Recall that the resulting coupling π = π̂[0,1],·,· = (projx,y)#π̂ whose marginals are
µ = µ̂[0,1],· and ν fits more naturally to the theory of optimal transportation than the lifted
coupling π̂.

Represent µ̂ in the form (µ̂[0,u],·)u∈[0,1]. The first canonical operation, called shadow
projection on ν, consists in building the curve (ν̂[0,u],·)u∈[0,1] from it (see Definition 2.1).
Hence the construction is complete if on a set L ⊆ [0, 1] of differentiation (of full measure)
of (µ̂[0,u],·)u and (ν̂[0,u],·)u we know for every u ∈ L how to canonically choose a joint law
π̂u,·,· of the derivatives µ̂u,· and ν̂u,·. In our situation, the martingale constraint on the one
side and the fact that we use the convex shadow projection of Definition 2.1 on the other
side will make this choice uniquely determined. As we will see π̂u,·,· is related to Kellerer’s
hitting projection (see Definition 2.6). We will thus obtain (π̂u,·)u∈[0,1] and equivalently
(π̂[0,u],·)u∈[0,1] and π̂. This construction will be carried out in detail in the proof of Theorem
2.9.

2.4. Order relations, convex shadow and alternative shadows. OnM we write µ �C,+

ν if there exists η ∈ M with µ �C η and η �+ ν. Here �+ means η(A) ≤ ν(A) for every
Borel set A. The order �C,+ can also be characterized by asserting µ( f ) ≤ ν( f ) for every
convex positive function f . We also introduce the stochastic order µ �sto ν that holds if
µ( f ) ≤ ν( f ) for every integrable increasing function. This is equivalent to Gµ ≤ Gν or
Fµ ≥ Fν. See [33] for more details on these order relations in the context of martingale
optimal transport.

Definition-Proposition 2.1 (Definition of the convex shadow). If µ and ν are positive real
measures and µ �C,+ ν there exists a unique measure η ∈ M such that

• µ �C η
• η �+ ν
• If η′ satisfies the two first conditions (i.e. µ �C η′ �+ ν), one has η �C η′.
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This measure η is called the convex shadow or simply shadow of µ in ν and we denote it
by S ν(µ).

In the two next examples we illustrate the general description of Subsection 2.3 with
two alternative types of shadow projections that may at the same time be more intuitive
and be useful for future comparisons in the paper.

Example 2.2. In this example we illustrate how the quantile coupling of µ and ν can be
defined going along the construction lines given in §2.3. Let us first recall that the shortest
formula for this quantile coupling is (Gµ,Gν)#λ. Similarly note that, as Gλ = Id, the
quantile coupling µ̂ = (Id,Gµ)#λ is actually the source for the left-curtain coupling. As
we will see µ̂ is also the source for our alternative definition of (Gµ,Gν)#λ as a shadow
coupling where a “fake” shadow replaces the (convex) shadow of Definition 2.1).

We first write µ as the superposition of Dirac measures in the following way:

µ =

∫ 1

0
µ̂u,· du

with µ̂u,· = δGµ(u) for every u ∈ [0, 1]. This corresponds to µ̂[0,u],· = (Gµ)#λ|[0,u] and, as
mentioned above, µ̂ = (Id,Gµ)#µ. We perform the same decomposition for ν:

ν =

∫ 1

0
ν̂u,· du,

where ν̂u,· = δGν(u) for every u ∈ [0, 1]. The quantile transport plan is now obtained in the
form

π =

∫ 1

0
π̂u,·,· du

since π̂u,·,· = δ(Gµ,Gν)(u) is the unique transport plan in Π(µ̂u,·, ν̂u,·).
To see this presentation as an example of shadow coupling we have firstly to see ν̂[0,u],·

as the shadow of µ̂[0,u],·, with a “fake shadow” projection adapted to the present example.
Secondly the curve (ν̂u,·)u is derived from (ν̂[0,u],·)u. To define the fake shadow in a similar
fashion as Definition 2.1 we simply say that ν̂[0,u],· is the measure η �+ ν with the same
mass as µ̂[0,u],· such that any other η′ �+ ν of mass u satisfies η �sto η

′. Of course ν̂[0,u],· is
simply (Gν)#λ|[0,u] the restriction of ν to the quantiles of level smaller that u up to the fact
that we may have to ‘break’ atoms at Gν(u).

Example 2.3. Let us go further than Example 2.2: in preparation to §3.1.3 and §3.2, let
us notice that if µ �sto ν, the “fake shadow” (Gν)#λ|[0,u] is also greater than (Gµ)#λ|[0,u] in
stochastic order so that under the condition µ �sto ν, the fake shadow is also a “stochastic
shadow” in the sense we are going to provide here (compare with Definition 2.1 of the
(convex) “true” shadows):

Let µ and ν be positive real measures and let Eν
µ be the set of measures η ∈ M such that

• µ �sto η
• η �+ ν

Assume Eν
µ , ∅. Then there exists η ∈ Eν

µ with η �sto η
′ for every η′ ∈ Eν

µ. We call this
measure the stochastic shadow of µ in ν.

Based on this definition under the condition µ �sto ν the coupling of Example 2.2 is truly
a stochastic shadow coupling adapted to the stochastic order, exactly as shadow couplings
of the present paper are in fact convex shadow couplings adapted to the convex order.
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Convex shadows are sometimes difficult to determine. An important fact is that they
have the smallest variance among the admissible measures η′. Indeed, η �C η′ implies∫

x dη =
∫

x dη′ and
∫

x2dη ≤
∫

x2dη′ with equality if and only if η = η′ or
∫

x2dη = +∞.

Example 2.4 (Shadow of an atom, Example 4.7 in [11]). Let δ be an atom of mass α at a
point x. Assume that δ �C,+ ν. Then S ν(δ) is the restriction of ν between two quantiles,
more precisely it is ν′ = (Gν)#λ]s;s′[ where s′ − s = α and the barycenter of ν′ is x.

The following result is one of the most important on the structure of shadows (Theorem
4.8 of [11]).

Proposition 2.5 (Structure of shadows). Let γ1, γ2 and ν be elements of M and assume
γ1 + γ2 �C,+ ν. Then, we have γ2 �C,+ ν − S ν(γ1) and

S ν(γ1 + γ2) = S ν(γ1) + S ν−S ν(γ1)(γ2).

An important consequence is that if (µ̂[0,u],·)u∈[0,1] is a primitive curve and µ̂[0,1],· �C ν,
then the curve (ν̂[0,u],·)u∈[0,1] satisfies ν̂[0,u],·(R) = u and using γ1 = µ̂[0,u],· and γ1 + γ2 =

µ̂[0,u′],· we obtain ν̂[0,u],· �+ ν̂[0,u′],· for every u ≤ u′. Hence (ν̂[0,u],·)u is a primitive curve. In
the next subsection we consider the derivatives of such curves (ν̂[0,u],·)u and introduce for
this the proper infinitesimal version of the shadow projection.

2.5. Hitting projection. We denote by F (R) the space of closed subsets of R, and I the
subspace of those elements T ∈ F (R) such that sup T = − inf T = +∞. The space F (R)
is endowed with a natural topology presented in [36, §2.1], i.e. the coarsest topology such
that F ∈ F (R) 7→ d(x, F) is continuous for every x ∈ R.

Definition 2.6 (Hitting projection of measure in/to a set). Let T be an element of I. For
every x ∈ R, let x−T = sup(T ∩ (−∞, x]) and x+

T = inf(T ∩ [x,+∞)). The Kellerer dilation
([36, Definition 16]) is given by

PT (x, ·) =

δx if x ∈ T ;
(x+

T − x−T )−1[(x+
T − x)δx−T + (x − x−T )δx+

T
] otherwise.

Hence if µ ∈ P, the hitting projection of µ in T is ν = µPT and the hitting coupling of µ
and ν is given by π(A × B) =

∫
A PT (x, B) dµ(x); we shall abbreviate this by π = µ(id×PT ).

Note that if T is not an element of I but supp(µ) ⊆ [inf T, sup T ], the kernel PT still
makes sense µ-almost surely.

Proposition 2.7. For µ̂ ∈ Π(λ, µ) and µ �C ν, let u 7→ µ̂[0,u],· have right derivative µ̂u0,· at
u0 and let ν̂[0,u],· be S ν(µ̂[0,u],·). Then (ν̂[0,u],·) has a right derivative at u0. This derivative
is given by µ̂u0,·PT and supp(µ̂u0,·) ⊆ [inf T, sup T ] where T is the support of ν̂]u0,1],· :=
ν − ν̂[0,u0],·.

Proof. Consider h−1(ν̂[0,u0+h],·−ν̂[0,u0],·) = h−1(S ν(µ̂[0,u0+h],·)−S ν(µ̂[0,u0],·)) =: σh. According
to Proposition 2.5, σh equals

h−1S ν̂]u0 ,1],· (µ̂]u0,u0+h],·),
where we set µ̂]u,v],· = µ̂[0,v],· − µ̂[0,u],·. However, we know that h−1(µ̂[0,u0+h],· − µ̂[0,u0],·) =

h−1µ̂]u0,u0+h],· tends to µ̂u0,· as h ↓ 0. An easy scaling analysis shows that σh can in fact be
written as

σh = S h−1 ν̂]u0 ,1],· (h−1µ̂]u0,u0+h],·).
Formally, in the limit, we are considering the shadow projection of µ̂u0,· into the infinite
measure ∞ · ν̂]u0,1],·. Here it is easy to believe that the support of ν̂]u0,1],·, denoted by T in
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our statement plays the leading role. We are indeed left with the proof that σh converges
to µ̂u0,·PT as h ↓ 0 (and of supp(µ̂u0,·) ⊆ [inf T, sup T ]). Since T1 is metric, it is enough to
replace h by a sequence (hn)n and apply the postponed Lemma 2.8 to the sequence (Hn)n

given through Hn := h−1
n , the sequence of probability measures h−1

n µ̂]u0,u0+hn],· for ηn, and
the measure ν̂]u0,1],· for υ. Note that this lemma delivers at the same time the convergence
and the claimed inclusion. �

Lemma 2.8. Let (Hn)n be a sequence of positive numbers tending to infinity, (ηn)n a se-
quence of probability measures (with finite first moment) converging to η in P and υ a
positive measure. Assume ηn �C,+ Hnυ for every n ≥ 1. Then, denoting by T the support
supp(υ) of υ it holds supp(η) ⊆ [inf T, sup T ] (replacing the bounds by ±∞ if necessary)
and S Hnυ(ηn)→ ηPT in P.

Proof. Note first that due to the convex order relation ηn �C,+ Hnυ we have supp(ηn) ⊆
supp(υ) ⊆ [inf T, sup T ] so that ηn([inf T, sup T ]) = 1, for every n. Letting n tend to
infinity we find supp(η) ⊆ [inf T, sup T ] as well.

1. Let us prove the result if ηn = δx for every n ∈ N. We prove in fact a somewhat
stronger statement: if γn has mass less than or equal to one and γn �+ Hnυ, the sequence
S Hnυ−γn (δx) converges to ηPT . Moreover x ∈ T ◦, x ∈ T c or x ∈ ∂T . In either of these cases
the result easily follows from Example 2.4.

2. We assume now that for every n ∈ N, we have ηn = η =
∑n

k=1 akδxk . We proceed by
induction. The initial step n = 1 has just been established. We assume the statement for
n−1 ≥ 1 and prove it for n by using the decomposition η = η′+anδn where η′ =

∑n−1
k=1 akδxk .

By Proposition 2.5 we have

S Hnυ(η′ + anδxn ) = S Hnυ(η′) + S βn (anδxn )

where βn = Hnυ − S Hnυ(η′). Each of the two terms converges to the Kellerer projection of
η′ respectively anδn onto T . Note that for the second projection we used the full strength
of the statement proved in 1.

3. A general measure η can be approximated using a convex combination of Dirac
masses ηk with ηk �C η and such that ηk → η [33, Point 3. in the proof of Proposition
2.34]. We have

W(S Hnυ(ηk), S Hnυ(η)) ≤ W(ηk, η).
This tends to zero uniformly in n as k goes to infinity. But S Hnυ(ηk) → ηkPT as n tends
to infinity and the composition with PT is continuous (cf. [36, Section 2.2], this can be
understood easily from the action of PT on the potential functions). Hence we obtain the
result for any constant sequence ηn = η.

4. If ηn is a non-constant sequence

W(S Hnυ(ηn), ηPT ) ≤ W(S Hnυ(ηn), S Hnυ(η)) + W(S Hnυ(η), ηPT ),

which tends to zero as required ([33, Proposition 2.34]). �

Based on the preparations above we can now rigorously introduce the lifted shadow
couplings.

Theorem 2.9 (Existence, construction, and uniqueness of the lifted shadow coupling).
Let µ and ν be elements of P with µ �C ν. Let µ̂ be an element of Π(λ, µ). Then there
exists a unique element π̂ ∈ Π̂M(µ̂, ν), the lifted shadow coupling of µ̂ and ν, such that for
every u ∈ [0, 1], the marginals of π̂[0,u],·,· are µ̂[0,u],· and its shadow projection S ν(µ̂[0,u],·).
Denoting this second marginal by ν̂[0,u],· and the derivative of (ν̂[0,u],·)u∈[0,1] by ν̂u,·, we have
moreover ν̂u,· = µ̂u,·PT (u) where T (u) is the support of ν̂]u,1],,· := ν̂[0,1],· − ν̂[0,u],·.
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Note that Theorem 2.9 implies in particular that there exists a unique π̂ satisfying The-
orem 1.1 (4).

Proof of Theorem 2.9. Let ν̂[0,u],· = S ν(µ̂[0,u],·) be as in the statement and let (µ̂u,·)u∈[0,1] and
(ν̂u,·)u∈[0,1] be the derivative curves. According to Proposition 2.7, ν̂u,· can for almost every
u ∈ [0, 1] be identified with the Kellerer projection of µ̂u,· in T (u) := supp(ν̂]u,1],·) where
ν̂]u,1],· = ν − ν̂]0,u],·. Hence we can define π̂u,· = µ̂u,·(id×PT (u)) ∈ ΠM(µ̂u,·, ν̂u,·) for almost
every u, and then the corresponding π̂ and π̂[0,u],· =

∫ u
0 π̂t,· dt.

Conversely, let π̂ and (π̂[0,u],·)u∈[0,1] be as in the statement. The curve has marginals
µ̂[0,u],· and ν̂[0,u],· = S ν(µ̂[0,u],·) so that one can apply Proposition 2.7. At points u where the
derivatives π̂u,·, µ̂u,· and ν̂u,· exist, we have π̂u,·,· ∈ ΠM(µ̂u,·, ν̂u,·) and ν̂u,· = µ̂u,·PT (u) as in the
last paragraph, proving the uniqueness part of the statement. �

3. Generating martingale couplings from particular lifts µ̂

3.1. Examples of shadow couplings. We now further discuss three special lifts µ̂ ∈
Π(λ, µ) of µ (with their associated primitive families (µ̂[0,u],·)u∈[0,1]) to give rise to particular
shadow couplings. The first one is the monotone coupling of λ and µ and the second the
independent coupling λ × µ.

• µ̂[0,u],· = (Gµ)#λ|[0,u] (corresponding to the left-curtain coupling ; # is the push-
forward operator);

• µ̂[0,u],· = u · µ (corresponding to the sunset coupling);
• µ̂[0,u],· = S µ(u.δm) where m =

∫
x dµ(x) (corresponding to the middle curtain cou-

pling). Recall Example 2.4 for the shadow of an atom.
Figure 4 illustrate the corresponding Skorokhod embeddings when µ and ν are two uniform
laws µ = 1[0,1]dx and ν = 1

31[−1,2]dx. Based on Remark 3.1 below he corresponding
equations for the shadows are summerized in Table 1, while Table 2 presents the equations
of the sources of the particular shadow couplings.

µ̂[0,u],· µ̂[0,u],· ν̂[0,u],·

πlc µ|(−∞,Gµ(u)) + (u − Fµ ◦Gµ(u))δGµ(u) 1[0,u]dx 1
31[−u,2u]dy

πsun u · µ u · 1[0,1]dx u · 1[0,1]dy or 1
31[1−2u,1+2u]dy

πmid µ|( f (u),g(u)) + c(u)δ f (u) + d(u)δg(u) 1[ 1−u
2 , 1+u

2 ]dx 1
31[1−2u,1+2u]dy

Table 1. General expression of µ̂[0,u],· and expressions of µ̂[0,u],· and ν̂[0,u],· for uniform
measures on [0, 1] and [−1, 2].

µ̂ µ̂u,· µ̂[0,u],·

πlc (Id×Gµ)#λ δGµ(u) µ|(−∞,Gµ(u)) + (u − Fµ ◦Gµ(u))δGµ(u)

πsun λ × µ µ u · µ
πmid a · (Id× f )#λ + b · (Id×g)#λ a(u)δ f (u) + b(u)δg(u) µ|( f (u),g(u)) + c(u)δ f (u) + d(u)δg(u)

Table 2. General expressions of µ̂, µ̂u,· and µ̂[0,u],· for the the main lift methods.

Remark 3.1 (Shadow of a uniform measure in a uniform measure). In the following we
illustrate our three examples with the fixed pair µ = 1[0,1]dx and ν = 1

31[−1,2]dx. Therefore
it is useful to clearly state that two measures η = m1[a,b] and η′ = m′1[a′,b′] satisfiy η �C,+ η

′

if and only if a+b
2 ±

m
m′

b−a
2 ∈ [a′, b′]. In this case the shadow is m′1[ a+b

2 −
m
m′

b−a
2 , a+b

2 + m
m′

b−a
2 ], that is

the measure with the same mass and barycenter as η, i.e. the restriction of η′ to an interval.
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νµ
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ν

λ
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λ

Figure 4. i. Left-curtain coupling of uniform measures. The map Gµ : [0, 1] → R is
identity and µ̂ is uniform on this graph, i.e. on the segment of ends (0, 0) and (1, 1). ii.
Sunset coupling of uniform measures. µ̂ is uniform on the square [0, 1]2. iii. Middle-
curtain coupling of uniform measures. µ̂ is uniform on the segment with ends (0, 1/2) and
(1, 1) and (1, 0). These segments are the graphs of f and g. The measures µ and ν satisfy
µ �DC ν (an order relation defined in §3.1.3).

3.1.1. The left- and right-curtain couplings. This case corresponds to the construction
given in [11], even though the construction described there appears slightly different. In
fact for u = Fµ(x) the three marginals of π̂|[0,1]×]−∞,x]×R are λ|[0,u], µ|]−∞,x] and S ν(µ]−∞,x])
so that for every x ∈ R, π|]−∞,x]×R has marginals µ|]−∞,x] and S ν(µ]−∞,x]). In [11] this was
used to define the left-curtain coupling πlc.

In an entirely symmetric fashion we can define the right-curtain coupling through µ̂[0,u],· =

(Gµ)#λ|[1−u,1] for u ∈ [0, 1].

3.1.2. The sunset coupling. In this case we have µ̂u,· = µ for almost every u ∈ [0, 1] and
ν̂u,· = µPT (u) where T (u) = supp(ν − S ν(u · µ)). Hence

ν =
∫ 1

0 µPT (u) du

Of course T (u) can be replaced by T ∗(u) = T (u) ∪ (] − ∞, inf ν] ∪ [sup ν,+∞[) ∈ I. We
refer the reader to Section 4 for further explanations.

3.1.3. The middle-curtain coupling. For diatomic probability measures µ = aδ f + bδg and
ν = a′δ f ′ + b′δg′ the relation µ �C ν holds if and only if a f + bg = a′ f ′ + b′g′ (same mean)
and [a, b] ⊆ [a′, b′]. In this case, as one can easily check, there exists a unique martingale
transport plan in ΠM(µ, ν). It is

πmid(µ, ν) =
1

g′ − f ′
(
[(g′ − f )δ f , f ′ + ( f − f ′)δ f ,g′ ] + [(g′ − g)δg, f ′ + (g − f ′)δg,g′ ]

)
.(6)

This basic fact permits us to construct simple martingale couplings for a special class of
ordered pairs µ �C ν in a parallel way to the way the quantile coupling is defined in
Example 2.3, under µ �sto ν. This martingale coupling is defined in [32] without assigning
a particular name. Here we shall call it middle-curtain coupling. In our case, diatomic
probability measures with mean m replace the atoms of Example 2.2. There is a almost
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surely unique family of diatomic measures (µ̂u,·)u∈[0,1] such that
∫ 1

0 (µ̂u,·)u∈[0,1]du = µ and
µ̂u,· �C µ̂u′,· for every u < u′. One (maybe too) elaborate way to see this is to define
µ̂[0,u],· = S µ(u · δm). We recall (see Example 2.4) that this measure is the restriction of
µ to an interval (with more or less mass at the ends of the interval) of mass u and mean
m. Consequently the derivative µ̂u,· is the diatomic probability measure announced above.
Note that this corresponds to µ̂u,· = a(u)δ f (u) + b(u)δg(u) where

• (a + b)(u) = 1;
• a(u) f (u) + b(u)g(u) = m;
• f is decreasing and g is increasing (we can moreover assume that they are right

continuous, as quantile functions are).
In the family (µ̂[0,u],·)u∈[0,1], the mass appears from the middle which explains the name
‘middle-curtain coupling’.

It may happen that

µ̂u,· �C ν̂u,· for every u ∈ [0, 1](7)

where we denote by (ν̂u,·)u∈[0,1] and ν̂[0,u],· the measures defined in the same way as µ̂u,· and
µ̂[0,u],·. Integrating the martingales couplings of (6) gives a martingale coupling

πmid(µ, ν) =

∫ 1

0
πmid(µ̂u,·, ν̂u,·) du(8)

of µ and ν, so that, in particular, µ �C ν. However, contrary to what happens in Example
2.3 for the stochastic order and the quantile coupling, µ �C ν is not equivalent to (7). We
call the latter necessary (but not sufficient) condition the diatomic convex order and denote
it by µ �DC ν. Due to the non-uniqueness of the derivative curve, a condition that better
define this order is probably S µ(u · δm) �C S ν(u · δm) for every u ≤ 1. It can be easily
proved to be equivalent.

As the notation πmid suggests, the coupling in (6) and (8) are the middle-curtain cou-
plings. The second formula generalises the first one. Let us see that the middle-curtain
coupling is a shadow coupling. We already expressed µ̂[0,u],· = S µ(u · δm). As we assumed
µ �DC ν, we have

u · δm �C S µ(u · δm)︸     ︷︷     ︸
µ̂[0,u],·

�C S ν(u · δm)︸     ︷︷     ︸
ν̂[0,u],·

≤ ν

so that S ν(µ̂[0,u],·) = ν̂[0,u],· is not difficult to derive from Definition 2.1. Therefore, under
µ �DC ν the coupling (8) is the shadow coupling of source µ̂. If µ �C ν but not µ �DC ν,
equation (8) has no meaning because µ̂u,· �C ν̂u,· is not satisfied for every u ∈ [0, 1], so that
πmid(µ̂u,·, ν̂u,·) does not exist. However, the shadow coupling is still defined, which permits
to naturally extend the idea of a middle-curtain coupling originally intoduced in [32] to
any ordered pair µ �C ν. Note that in this case, S ν(µ̂[0,u],·) , S ν(u · δm) at least for one
u ∈ [0, 1].

Remark 3.2. Finally, note that for every family of probability measures (µt)t∈T indexed
by any partial order T so that s ≤ t implies µs �DC µt, there exists a martingale (Xt)t∈T

such that Law(Xs, Xt) is the middle-curtain coupling of µs and µt for every s < t ∈ T , [32,
Theorem 4].

3.2. Comparison with the stochastic order; quantile and independent couplings. We
have seen in Examples 2.2 and 2.3 that with the quantile coupling as source µ̂, and modi-
fying the definition of shadow (fake shadow or stochastic shadow respectively), the related
shadow couplings are in both examples the quantile coupling of µ and ν. In this sense the
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left-curtain coupling can be seen as the quantile coupling with respect to the convex order.
The left-curtain and the quantile coupling are also analogous on the level of optimality
properties, see [11, Sections 1.2, 1.3].

While the left-curtain coupling can be viewed as the quantile coupling of the convex
order world, we will explain next in which sense the sunset coupling corresponds to the
independent (aka product) coupling. This comparison is based on the fake shadow of Ex-
ample 2.2 but is unfortunately not coherent with Example 2.3. Thus, ν̂[0,u],· = (Gν)#λ|[0,u].
We take the same source µ̂ = λ × µ as for the sunset coupling, so that µ̂u,· = µ. It is then
easy to identify the derivative in the target space as ν̂u,· = δGν(u). But µ× δGν(u) is the unique
element of Π(µ, δGν(u)). We thus obtain

π̂[0,1],·,· = π =

∫ 1

0
µ × δGν(u) du.

This coupling is nothing but the product µ × ν. Recall that for the same source λ × µ and
the convex shadow (of Definition 2.1) we obtain the sunset coupling.

4. On Theorem 1.3 by Kellerer and the sunset coupling

In this section we give a new proof of Theorem 1.3 which is the key step in Kellerer’s
theorem on the existence of Markov martingales with given marginals. Recall that Theo-
rem 1.3 is a result on the existence of a special element of ΠM(µ, ν) where µ and ν are in
convex ordering, extending Strassen theorem. Concretely we are looking for a Lipschitz
martingale transport, i.e. some π ∈ ΠM(µ, ν) such that x ∈ R → πx,· ∈ (P(R),W) is Lip-
schitz on a set of full µ measure. Recall Remark 1.2 for equivalent formulations. As we
will see here, the sunset coupling πsun ∈ ΠM(µ, ν) is such an element. In Theorem 4.5 we
will moreover characterize it as the unique Lipschitz martingale coupling satisfying some
additional conditions.

Both the sunset coupling and the coupling (abstractly) defined by Kellerer for his proof
of Theorem 1.3 come together with an integral representation of elements that are extreme
in the sense of Choquet’s theory. In the next paragraph we provide a reminder on this theory
and describe Kellerer’s proof of Theorem 1.3. Paragraph 4.2 shows how Theorem 1.1
entails such a representation. In §4.3 we comment on the uniqueness of this representation,
see Theorem 4.5.

4.1. Kellerer’s proof ([35, 36]) of Theorem 1.3. Let us present the Choquet represen-
tation yielding a Lipschitz element in ΠM(µ, ν). It is based on the integral representation
of the elements of the convex set E(µ) = {η ∈ P : µ �C η}. Kellerer establishes in [36,
Theorem 1] that for a given µ ∈ P the extreme points of E(µ) exactly are the measures µPT

where PT is the Kellerer dilation for a set T ∈ I defined in Definition 2.6.
Recall that if T is not an element of I but supp(µ) ⊆ [inf T, sup T ], the kernel PT still

makes sense µ-almost surely. Note that if µ �C ν, this remark applies to the set T = supp(ν)
since supp(µ) ⊆ [inf T, sup T ]. The Kellerer dilation possesses important properties.

Proposition 4.1. Let µ be an element of P and T ∈ F (R) satisfy supp(µ) ⊆ [inf T, sup T ].
Then W(PT (x, ·), PT (x′, ·)) ≤ |x − x′| for every x, x′ in supp(µ). Moreover the hitting cou-
pling µ(id×PT ) is the unique element of ΠM(µ, µPT ).

Proof. Part 1. is on the Lipschitz property and 2. on the uniqueness.
1. This is for instance explained in [6, §3.1]. Briefly, recall that for two probabil-

ity measures κ and κ′ of P, we have W(κ, κ′) =
∫

[0,1] |Gκ′ − Gκ|. However, as the law of
Gκ on ([0, 1], λ) is κ, the integral

∫
[0,1] Gκ is the expectation

∫
x dκ(x). The same holds
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for κ′. Therefore the condition Gκ ≤ Gκ′ (equivalent to κ �sto κ′) yields W(κ, κ′) =∣∣∣∣∫[0,1] Gκ′ −
∫

[0,1] Gκ

∣∣∣∣ where we usually only have an inequality. This can be applied to
κ = PT (x, ·) and κ′ = PT (x′, ·) as soon as x ≤ x′ because these measures clearly are in
stochastic order.

2. This is [36, Satz 25]. Alternatively, one may consider the canonical decomposition of
(µ, ν) into irreducible components described in [11, Theorem 8.4] that we recall now. The
set {uµ < uν} is open and hence consists of a (finite or countable) union of open intervals
(In)n≥1. We denote by I0 the closed set {uµ = uν}. Write µn = µ|In and µ = µ0 +

∑
n≥1 µn. By

[11, Theorem 8.4] we can write ν = ν0 +
∑

n≥1 νn where ν0 = µ0, for n ≥ 1, the measures νn

are concentrated on Īn and any π ∈ ΠM(µ, ν) can be decomposed as π = (Id× Id)#(µ0)+
∑
πn

with πn ∈ ΠM(µn, νn), n ≥ 0.
In the present situation, from the definitions of uµ, uν and PT , the potential functions are

the same on T , i.e. T ⊆ I0. If I is an open connected interval of R \ T , we have moreover
ν(I) = (µPT )(I) = 0 so that uν is affine on each interval Ī (recall that its second derivative
is 2ν). As uµ is convex on I we have uµ < uν if µ(I) > 0 or uµ = uν if µ(I) = ν(I) = 0.
Hence, the connected intervals (In)n≥1 of {uµ < uν} are among the connected intervals I of
R\T . We obtain that νn(In) = 0 and thus νn is the atomic measure concentrated on ∂In with
µn �C νn. This implies that necessarily πn = µn(id×PT ) and hence π = µ(id×PT ). �

We can now state the integral representation established by Kellerer [36, Theorem 1]
together with the Lipschitz property. Recall that Theorem 4.2 entails Theorem 1.3.

Theorem 4.2 (A Choquet representation established by Kellerer). Let µ and ν ∈ P satisfy
µ �C ν. Then there exists a probability measure χ on I such that

∫
I

d(0,T ) dχ(T ) < ∞ and

ν =

∫
I

µPT dχ(T ) =: µPχ =: µχ.(9)

Moreover Pχ is a Lipschitz kernel (and µ(Id×Pχ) ∈ ΠM(µ, ν) is a Lipschitz martingale
transport plan).

Scheme of the proof by Kellerer. 1. Kellerer establishes that for a given µ ∈ P the extreme
points of E(µ) = {η ∈ P : µ �C η} exactly are the measures µPT (see [36, §3.1, 3.2]). The
latter set is not compact but going first through the spaces {ν ∈ P, µ �C η �C µPS } that are
compact and convex for every set S ∈ I, Kellerer is able to derive a Choquet representation
in [36, Theorem 4] so that any ν ∈ E(µ) can be represented in the form µχ.

2. The Lipschitz estimate is based on the estimate in Proposition 4.1 and the inequality

W
( ∫
I

PT (x)dχ(T ),
∫
I

PT (x′)dχ(T )
)
≤

∫
I

W(PT (x), PT (x′))dχ(T )

that can be obtained as a simple consequence of the formula W(κ, κ′) =
∫
R
|Fκ′ − Fκ|.

In Kellerer’s paper [35] this estimate is established in Satz 20 (for the similar case of
submartingale couplings). �

In [36], uniqueness of a measure on the extreme elements of E(µ) is not claimed and can
easily be disproved. Set for instance µ = δ0 and ν = δ−2+δ−1+δ1+δ2

4 . Taking the probability
measure χ = 2−1(δT1 + δT2 ) on T1 = R\] − 1, 1[ and T2 = R\] − 2, 2[ on the one hand and
χ′ = 8−1(3δT ′1 + 3δT ′2 + 2δT ′3 ) on T ′1 = R\] − 1, 2[, T ′2 = R\] − 2, 1[ and T ′3 = R\] − 2, 2[
on the other hand we obtain two different representations of ν = µχ = µχ′ . Another, more
trivial, type of non-uniqueness can be observed: in the previous example T1 can also be
replaced for instance by R \ (] − 1, 1[∪] − 20,−15[) providing the same measure on P but
another measure on I.
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4.2. Our proof of Theorem 1.3 and Theorem 4.2 using πsun. Let us now discuss how
πsun ∈ ΠM(µ, ν) compares to Kellerer’s proof of the existence of Lipschitz kernels. In fact
according to the barrier characterization in Theorem 1.1, we have

πsun =

∫ 1

0
π̂u,·,· du.

Here π̂u,·,· = Law((B0, Bτ) | U = u) where U is uniform on [0, 1] and (Bt) is a Brownian
motion with starting distribution µu,·, that is identically µu,· = µ for the sunset coupling,
and τ (conditioned on U = u) is the hitting time of the barrier’s vertical section Ru := {y ∈
R : (u, y) ∈ R}, see Figure 2. Therefore, considering the second marginal only we obtain

ν =

∫ 1

0
µPRu du.(10)

This corresponds to (9) in Theorem 4.2 for which we have therefore obtained a new proof
(and a fortiori for Theorem 1.3). Note that πsun is systematically constructed from µ and ν,
which was not the case for µ(Id×Pχ) in the proof by Kellerer. In the next subsection we
refine this remark with a uniqueness statement, see Theorem 4.5.

Remark 4.3. According to Theorem 1.1 (4), for every u ∈ [0, 1] the transport plan π̂u,·,·

transfers µ̂u,· = µ onto the right derivative of u 7→ ν̂[0,u],· = S ν(µ[0,u],·). The existence of
such a construction is already clear from Theorem 2.9 and Proposition 2.7 where see that
that this transport is given through the hitting projection of µ onto supp(ν − ν̂[0,u],·), the
support of ν − ν̂[0,u],·. Note however that the corresponding uniqueness result of Theorem
4.5 will really rely on Theorem 1.1, not on Theorem 2.9 only.

Remark 4.4. After Remark 4.3, a systematic choice for Ru is the support of ν − ν̂[0,u],·. The
fact that Ru may not be an element of I as it should be according to Theorem 4.2 can easily
repaired by replacing it by (−∞,min Ru]∪Ru∪[max Ru,∞). Comparing (10) with Theorem
4.2 again It is not evident that

∫ 1
0 d(0,Ru) du < ∞. However, according to Lemma 15 in

[36], this holds if and only if ν has finite first moments, i.e. is an element of P.

4.3. Uniqueness statement beyond Theorems 1.3 and 4.2. We stress that the uniqueness
in Theorem 1.1 permits us to guarantee that there exists a unique Choquet representation
through a family (Ru)u∈[0,1] that is ordered in the sense that u ≤ v implies that Ru ⊇ Rv.
Indeed, the vertical sections of a barrier defined as in Theorem 1.1 (2) are ordered in this
sense (cf. Figure 3).

If some Choquet representation of ν is given by measures obtained using the hitting
projection on sets Ru that are ordered in the above sense, then these sets constitute a barrier
and based on the uniqueness assertion in Theorem 1.1, the family (ν̂u,·)u∈[0,1] with ν = µPRu

is the one associated to the sunset coupling.
While until §4.2 we only used results contained in Theorem 2.9, for the first time in this

paper we now make use of the full strength our main theorem (whose proof is given in the
next section). In particular we not only assume that the sunset coupling exists but also that
it is uniquely determined by the properties of barriers.

Theorem 4.5 (Sunset coupling and Lipschitz kernel). Let µ, ν ∈ P satisfy µ �C ν. Then
there exists a probability measure χ on I such that

∫
I

d(0,T ) dχ(T ) < ∞ and

ν(A) =
∫
I
µPT (A) dχ(T ) =: µPχ(A) =: µχ(A).(11)

Moreover Pχ is a Lipschitz kernel (and µ(Id×Pχ) ∈ ΠM(µ, ν) is a Lipschitz martingale
transport plan).
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A possible choice of χ is the uniform measure on (Ru)u∈[0,1] where Ru is a decreasing
family for ⊆. Moreover if χ′ is another measure associated to a decreasing family (R′u)u∈[0,1]
with ν = µPχ′ and µ(Id×Pχ′ ) ∈ ΠM(µ, ν), then µ(Id×Pχ) = µ(Id×Pχ′ ). (This measure is
the sunset coupling of µ and ν, that is the shadow coupling of µ with source µ̂ = λ × µ and
target ν.)

Hence we have obtained an advanced version of Theorem 1.3 both related to the original
proof by Kellerer and the Skorokhod embedding problem. Since other proofs that ΠM(µ, ν)
contains at least one Lipschitz kernel are given by solutions of the Skorokhod embedding
problem –Root’s embedding ([44]) is considered in [10] and Hobson’s embedding ([25])
in [37, Lemma 3.3]– with Theorem 1.1 we finally spans a bridge between the two methods
of using Choquet’s theorem and applying Skorokhod embedding techniques, respectively.

5. Proof of Theorem 1.1

Throughout this section we assume that µ, ν are in convex order and that µ̂ ∈ Π(λ, µ).
Given a measurable c : [0, 1] × R × R→ R+ we consider the optimization problem

(12) P := Pc := inf
{∫

c dπ̂ : π̂ ∈ Π̂M(µ̂, ν)
}
.

Proposition 5.1. Assume that π̂ is the lifted shadow coupling corresponding to a curve
(π̂[0,u],·)u∈[0,1] as in Theorem 1.1 (4). Then for all p ∈ [0, 1], q ∈ R, π̂ is an optimizer of (12)
for cp,q(u, x, y) = 1u≤p|y − q|.

Conversely if γ̂ ∈ Π̂M(µ̂, ν) is a minimizer for every cp,q where (p, q) ∈ [0, 1]×R, then γ̂
is the lifted shadow coupling from µ to ν with source µ̂.

Proof. Let π̂ ∈ Π̂M(µ̂, ν) be a shadow coupling and (p, q) as in the statement. Then∫
cp,q dπ̂ =

∫
|y − q| dν̂[0,p],·(y) where we recall ν̂[0,p],· = S ν(µ̂[0,p],·). More generally if γ̂

is an element of Π̂M(µ̂, ν) we have
∫

cp,qdγ̂ =
∫
|y − q| dβp(y) where µ̂[0,p],· �C βp and

βp �+ ν (in fact βp := (projy)#γ|[0,p]×R×R)). Therefore ν̂[0,q],· �C βp and as y 7→ |y − q| is
convex, we have proved that π̂ is a minimizer.

If γ̂ ∈ Π̂M(µ̂, ν) is a minimizer for cp,q for any p ∈ [0, 1], then the measures βp

and ν̂[0,p],· have the same potential function. Thus, they are equal and the curve p 7→
(projy)#γ̂|[0,p]×R×R) is completely determined. As also noticed in Theorem 1.1, since µ̂ is
known such couplings are uniquely determined, so that γ̂ = π̂. �

Recall from Theorem 1.1 that a set Γ̂ ⊆ [0, 1] × R × R is called monotone if for all
u, v, x, x′, y−, y+, y′ such that u < v, (u, x, y−), (u, x, y+), (v, x′, y′) ∈ Γ it holds y′ <]y−, y+[.

Proposition 5.2. Assume that π̂ ∈ ΠM(µ, ν) satisfies one of the following assumptions:

(1) For all p ∈ [0, 1], q ∈ R, π̂ is an optimizer of (12) for cp,q(u, x, y) = 1u≤p|y − q|.
(2) π̂ is an optimizer of (12) for c(u, x, y) = (1 − u)

√
1 + y2.

Then there is a monotone set Γ̂ such that π̂(Γ̂) = 1.

Proof. We will establish the assertion under the first assumption, the argument based on
the second assumption is very similar.

Using the notation and the monotonicity principle from [7], we pick for each (p, q) ∈
([0, 1] × R) ∩ Q2 a monotoncity set Γ(p,q) for the cost function and set

Γ :=
⋂

(p,q)∈[0,1]×R∩Q2

Γ(p,q).
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Assume for contradiction that there exist s, t, x, x′, y−, y+, y′ such that

s < t, and a := (s, x, y−), b := (s, x, y+), c := (t, x′, y′) ∈ Γ, and y′ ∈]y−, y+[.

Pick λ such that y′ = (1 − λ)y− + λy+, p ∈]s, t[, and q very close to y′ (in comparison to
y−, y+). Set

a′ := (t, x′, y−), b′ := (t, x′, y+), c′ := (s, x, y′).

Then
α := (1 − λ)δa + λδb + δc and α′ := (1 − λ)δa′ + λδb′ + δc′

are competitors with suppα ⊆ Γ̂ and
∫

cp,q dα >
∫

cp,q dα′, contradiction. �

In the next result we establish that any π̂ which is monotone admits a barrier represen-
tation as in Theorem 1.1 (2).

Proposition 5.3. Let π̂ ∈ ΠM(µ̂, ν) be a transport plan concentrated on a monotone set Γ̂.
Define barriers

Ro := {(s, y) ∈ [0, 1] × R : ∃t > s, (t, y) ∈ Γ̂}(13)

Rc := {(s, y) ∈ [0, 1] × R : ∃t ≥ s, (t, y) ∈ Γ̂}.(14)

Consider a process (Zt)t≥0 = (Z1
t ,Z

2
t )t≥0 = (Z1

0 ,Z
2
t )t≥0 on some probability space which

takes values in [0, 1] × R and is specified through

(1) Z0 ∼ µ̂,
(2) Zt = Z0 + (0, Bt), where (Bt)t is (one dimensional) Brownian motion.

and write τo, τc for the first time Z hits Ro respectively Rc.
Then

• τo = τc a.s.
• It holds

(Z0,Zτo ) ∼ (Z0,Zτc ) ∼ π̂.(15)

• The martingales t 7→ Zt∧τ and t 7→ Bt∧τ are uniformly integrable.
• There exist Borel maps Tup,Tdown : [0, 1] × R → R,Tdown(x) ≤ x ≤ Tup(x) such

that
π̂{(u, x,Ti(x)) : i ∈ {up, down}, (u, x) ∈ [0, 1] × R} = 1.

Proof. Fix a disintegration (πu,x) of π̂ with respect to µ̂ and write Γu,x for the section of Γ̂

in (u, x). Then µ̂(Γ0) = 1, where

Γ0 =
{
(u, x) : πu,x(Γu,x) = 1,

∫
|y| dπu,x < ∞,

∫
y dπu,x = x

}
.

Define for each (u, x) ∈ [0, 1] × R, τu,x to be (say) the Azema-Yor solution of the Sko-
rokhod embedding problem such that Bτu,x ∼ πu,x. Then define a stopping time τ such that
conditionally on Z0 = (u, x) we have τ = τu,x. It follows that (Z0,Z2

τ ) ∼ π̂ and that for all
elements ω of a full measure set Ω0 we have (Z1

0 (ω),Z2
0 (ω),Z2

τ (ω)) ∈ Γ̂. Next we claim that
there exists a full measure subset Ω1 of Ω0 such that for all ω ∈ Ω1 and every t < τ(ω), the
following assertion holds true:

Continuation Assertion on (ω, t). There are ωi ∈ Ω0, i = 1, 2 satisfying

(1) t < τ(ωi), (Zs(ω))s≤t = (Zs(ωi))s≤t for i = 1, 2,
(2) Z2

τ (ω1) < Z2
t (ω) < Z2

τ (ω2).
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Assume for contradiction that the set

{(ω, t) : t < τ(ω) and Continuation Assertion fails} =: D

is not evanescent, i.e. that projΩ(D) does not have P-measure 0. Set

D− := {(ω, t) ∈ ~0, τ~ : ω1 ∈ Ω0, t < τ(ω1), (Zs(ω1))s≤t = (Zs(ω))s≤t ⇒ Zτ(ω1) ≤ Zt(ω)}

D+ := {(ω, t) ∈ ~0, τ~ : ω2 ∈ Ω0, r < τ(ω2), (Zs(ω2))s≤t = (Zs(ω2))s≤t ⇒ Zτ(ω2) ≥ Zt(ω)}

such that D = D− ∪ D+. If D is not evanescent, then by the optional section theorem there
exists a stopping time σ such that P(σ < ∞) > 0 and

{(ω,σ(ω)) : σ(ω) < ∞} ⊆ D− or {(ω,σ(ω)) : σ(ω) < ∞} ⊆ D+.

Combined with the strong Markov property this leads to a contradiction with the optional
stopping theorem.

We claim that on Ω1

τc ≤ τ ≤ τo.(16)

Note that the first inequality is satisfied by definition of τc. To establish the second inequal-
ity we assume for contradiction that there exists ω ∈ Ω1 such that τo(ω) < τ(ω).

Then t∗ := min{t ≥ 0 : Zt(ω) ∈ Ro} < τ(ω). Set y′ := Z2
t∗ (ω) and (u, x) = (Z1

0 (ω),Z2
0 (ω)).

By definition of Ro, there exist v > u and x′ such that (v, x′, y′) ∈ Γ̂. Pick ωi, i = 1, 2
according to the Continuation Assertion. Setting yi = Z2

τ (ωi), i = 1, 2, we have (u, x, yi) ∈
Γ̂, contradiction.

By Lemma 5.4 τc = τo almost surely hence (15) holds.
To see that (Zt∧τ) (respectively (Bt∧τ)) is uniformly integrable we recall a result of Mon-

roe [39] which asserts that a solution τ of the Skorokhod problem is minimal (i.e. there
is no strictly smaller solution) if and only if Brownian motion up to time τ is uniformly
integrable. In the present context it is straightforward to verify that τ provides a minimal
embedding of ν with respect to Z2 (we refer to [9, Proposition 4.1] for complete details),
hence (Z2

t∧τ) is uniformly integrable.
The rest is immediate. �

In the proof we used the following lemma from [6] (we include the proof for the conve-
nience of the reader).

Lemma 5.4. Let µ̂ be a probability measure on R2 such that the projection onto the hori-
zontal axis projx µ̂ is continuous (in the sense of not having atoms) and let φ : R→ R be a
Borel function. Set

Ro := {(x, y) : x > φ(y)}, Rc := {(x, y) : x ≥ φ(y)}.

Start a vertically moving Brownian motion in µ and define

τo := inf{t : (x, y + Bt) ∈ Ro}, τc := inf{t : (x, y + Bt) ∈ Rc}.

Then τc = τo almost surely.

Proof. Obviously τc ≤ τo.
We say that y is a local minimum of φ if φ(y′) ≥ φ(y) for all y′ in a neighborhood of y.

Set
I := {φ(y) : y is a local minimum of φ}.

It is then not difficult to prove (and certainly well known) that I is at most countable:
assume by contradiction that there exist an uncountably family A ⊆ R and corresponding
neighborhoods ]a−εsun, a+εa[, a ∈ A such that φ(x) ≥ φ(a) for x ∈]a−εa, a+εa[ and a , a′
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implies f (a) , f (a′). Passing to an uncountable subset of A, we can assume that there is
some η > 0 such that εa > η for all a ∈ A. For a , a′ we cannot have |a − a′| < η for then
a ∈]a′ − εa′ , a′ + εa′ [ as well as a′ ∈]a − εa, a + εa[ which would imply that f (a) = f (a′).
Hence |a − a′| ≥ η which implies that A is countable, giving a contradiction.

On the complement of I × R we have almost surely

τo = 0 ⇐⇒ τc = 0(17)

as a consequence of the strong Markov property. �

We have thus obtained an interpretation of monotone transport plans in terms of a
barrier-type solution to the Skorokhod problem. This interpretation is useful for us since
it allows us to use a short argument of Loynes [38] (which in turn builds on Root [43]) to
show that there is only one monotone transference plan.

Lemma 5.5 (cf. Loynes [38]). Let π̂1, π̂2 be monotone transport plans in Π̂M(µ̂, ν), with
corresponding maps T P = (T i

up,T
i
down) and denote by Rπ̂i , i = 1, 2 the corresponding

‘closed’ barriers as in Proposition 5.3. Then τRπ̂1 = τRπ̂2 , a.s.

Proof. For a set A ⊆ R, we abbreviate Ri(A) := Rπ̂i ∩ (R × A) and τi = τRπ̂i for i = 1, 2.
Denote

K :=
{
y : m1(y) > m2(y)

}
where mi(y) := sup{m : (m, y) ∈ Rπ̂i }, i = 1, 2.(18)

Fix a trajectory (Zt)t = (Zt(ω))t such that Z2
τ2
∈ K. Then (Zt)t hits R2(K) before it enters

R2(KC). But then (Z)t also hits R1(K) before it enters R1(KC). Hence

Bτ2 ∈ K =⇒ Bτ1 ∈ K.

As both stopping times embed the same measure, this implication is an equivalence almost
surely, and we may set ΩK := {Bτ1 ∈ K} = {Bτ2 ∈ K}. On ΩK we have τ1 ≤ τ2 while
τ1 ≥ τ2 on ΩC

K . Then, for all Borel subset A ⊆ R:

P
[
Bτ1∧τ2 ∈ A

]
= P

[
Bτ1∧τ2 ∈ A,ΩK

]
+ P

[
Bτ1∧τ2 ∈ A,Ωc

K
]

(19)

= P
[
Bτ1 ∈ A,ΩK

]
+ P

[
Bτ2 ∈ A,Ωc

K
]

(20)

= P
[
Bτ1 ∈ A ∩ K

]
+ P

[
Bτ2 ∈ A ∩ Kc](21)

= P
[
Bτ2 ∈ A ∩ K

]
+ P

[
Bτ2 ∈ A ∩ Kc](22)

= P
[
Bτ2 ∈ A

]
(23)

since Bτi ∼ ν. Hence τ1 ∧ τ2 embeds ν. Similarly, we see that τ1 ∨ τ2 also embeds ν.
Since τ1 and τ2 are both minimal embeddings, we deduce that τ1 ∧ τ2 = τ1 as well as
τ1 ∧ τ2 = τ2. �

Taking the results of this section we can now establish our main theorem.

Proof of Theorem 1.1. We have already seen in Theorem 2.9 that there exists π̂ ∈ Π̂M(µ̂, ν)
satisfying Theorem 1.1 (4). By virtue of Propositions 5.1, 5.2 we have that π̂ is monotone
as required in 1.1 (3) and by Proposition 5.3 π̂ admits a barrier type representation as in
1.1 (2). Moreover, by Lemma 5.4 we find that there exists a unique such π̂.

Finally, by the standard compactness-continuity argument there exists π̂ which solves
the optimization problem in Theorem 1.1 (1), by Proposition 5.2 it is monotone and hence
uniquely determined as before. �



SHADOW COUPLINGS 23

Note that in the proof of Theorem 1.1, we did not use the uniqueness part in the state-
ment of Theorem 2.9; rather we have obtained a second derivation of this uniqueness prop-
erty based on Lemma 5.5.

We close this section with a remark on the implication of the above results for the curtain
coupling.

Remark 5.6. We consider the curtain coupling πlc corresponding to the case where the
source µ̂ is given by the monotone rearrangement between Lebesgue measure and µ. As-
sume for simplicity that µ has no atoms such that the source µ̂ is concentrated on the graph
of a 1-1 function elements of ΠM(µ, ν) correspond in a 1-1 manner to elements of Π̂M(µ̂, ν).
It then follows from the respective optimality property of π̂ that πlc minimizes

γ 7→

∫
φ(x)ψ(y) dγ(x, y)(24)

on the set ΠM(µ, ν), where φ ≥ 0 is strictly decreasing and ψ ≥ 0 is strictly convex and
the minimum over ΠM(µ, ν) is finite. Moreover, there exist a Borel set S ⊆ R and two
measurable functions T1,T2 : S → R such that

(1) πlc is concentrated on the graphs of T1 and T2.
(2) For all x ∈ R, T1(x) ≤ x ≤ T2(x).
(3) For all x < x′ ∈ R, T2(x) < T2(x′) and T1(x′) < ]T1(x),T2(x)[.

This recovers [11, Corollary 1.6].

6. The sunset coupling as a non-optimizer and shadow couplings as optimizers to
general transport problems.

An important message of [11, 22] is that the left-curtain couplings are characterized as
the optimizers to martingale optimal transport problems for a large class of cost functions.
This goes together with the fact that the support of the left-curtain coupling is typically a
very ‘small’ set – if µ is continuous, it is contained in the graphs of two functions.

In contrast, the sunset coupling typically has a ‘large’ support. Hence we do not expect
it to solve a martingale transport problem except in trivial instances. This is underlined by
the following simple example.

Example 6.1. Let µ, ν be measures in convex order such that
(1) conv(supp(µ)) ∩ supp(ν) = ∅

(2) µ, ν consist of finitely many atoms.
Assume c is such that the sunset coupling is optimal for the martingale transport problem.
Then all elements of ΠM(µ, ν) are optimal for the martingale transport problem.

Proof. We first note that supp(πsun) = supp(µ) × supp(ν) under our assumptions on µ, ν.
In the present atomic case, the martingale transport problem can be formulated as a

linear programming problem and it admits a natural dual problem for which strong duality
holds. It follows from this that every martingale transport plan π ∈ ΠM(µ, ν) satisfying
supp(π) ⊆ supp(πsun) is optimal. �

For simplicity, we have stated Example 6.1 for discrete marginals but (with some work)
it is not difficult to see that the same phenomenon carries over to more general cases.

However we find it interesting to note that shadow couplings possess optimality prop-
erties in a different sense:

The general optimal transport problem was introduced by Gozlan, Roberto, Samson
and Tetali [20] having applications to geometric inequalities in mind and has immediately
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generated interest in several groups of researchers, see [17, 19, 1, 2]. As in the classical
case, one optimizes over the set of transport plans π ∈ Π(µ, ν), where µ, ν are probabilities
on Polish spaces X,Y . In contrast to the classical case, more general cost functionals are
considered. Writing P(Y) for the set of all probability measures on Y , a general cost is a
function C : X × P(Y)→ [0,∞] and its associated transport costs are

TC(ν|µ) := inf
π∈Π(µ,ν)

∫
C(x, πx,·) dµ(x),(25)

where we use (πx,·)x∈R to denote disintegration with respect to µ.
The shadow couplings appear as optimizers to such general transport problems. E.g.

we will see below that the sunset coupling is the unique optimizer for the general transport
cost function

C(x, π̄) := inf
α∈Π̂M (λ×δx,π̄)

∫
(1 − u)

√
1 + y2 dα(u, x′, y).(26)

Here the function (u, y) 7→ (1 − u)
√

1 + y2 could be replaced by any function of the form
(u, y) 7→ φ(u)ψ(y), where φ is strictly increasing and ψ strictly convex and sufficiently
integrable with respect to the given marginals. The cost function defined in (26) exhibits a
relatively intuitive behavior: if π̄ does not have center x the costs equal +∞. If π̄ is centered
around x, the more π̄ is spread out, the higher are the costs.

We note that the existence of optimizers for cost functions of the above type is guaran-
teed by abstract results for the theory of general optimal transport problems [4, 19].

Proposition 6.2. Let µ and ν be in convex order and fix a disintegration (µ̂·,x)x of µ̂ with
respect to µ and set

Cµ̂(x, π̄) := inf
α∈Π̂M (µ̂·,x×δx,π̄)

∫
(1 − u)

√
1 + y2 dα(u, x′, y).(27)

Then the shadow coupling associated to µ̂ is the unique optimizer of the general transport
problem associated to Cµ̂.

Proof. Given π̂ ∈ Π̂M(µ̂, ν), write π for the corresponding martingale transport π ∈ ΠM(µ, ν)
and (πx,·)x∈R for its disintegration with respect to µ. We note that π̂ can be µ-a.s. uniquely
represented in the form

π̂(A × B ×C) =

∫
dµ(x)

∫
dαx(u, x′, z)1A×B×C(u, x, y),(28)

where (αx) is the (measurable) family with αx ∈ Π̂M(µ̂·,x × δx, π̄x) and (proju,y)#αx = π̂·,x,·.
We then find

inf
π̂∈Π̂M (µ̂,ν)

∫
(1 − u)

√
1 + y2 dπ̂ = inf

π∈ΠM (µ,ν)

∫
inf

α∈Π̂M (µ̂·,x×δx,πx,·)

(∫
(1 − u)

√
1 + y2 dα(u, x′, y)

)
dµ(x)

(29)

= inf
π∈Π(µ,ν)

∫
Cµ̂(x, πx,·) dµ(x). �

We note that the solution to the optimization problems (26) / (27) is straightforward to
characterize in the non-trivial case where x is the barycenter of π̄: The optimizer α is the
unique element of Π̂M(µ̂·,x × δx, π̄) which is concentrated on the graphs of two functions
T x

up : [0, 1] → [x,∞), T x
down : [0, 1] → (−∞, x], where T x

up is increasing and T x
down is

decreasing.
In the particular case, where the source is the quantile coupling, we obtain that the left
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curtain coupling is concentrated on the graph of two functions (x, u) 7→ T x
up(x, u), (x, u) 7→

T x
down(x, u). We can thus recover the main result of Hobson and Norgilas [30].

7. Appendix: Notation

We gather here our notation and terminology so that the reader can refer to it when
needed. This also appear at the appropriate place where it is introduced first.

7.1. Probability and positive finite measures. The letters µ and ν stand for probability
measures on R and π for measures on R2 with marginals µ and ν. We denote the Lebesgue
measure on [0, 1] by λ . The lifted measures µ̂ , ν̂ and π̂ stand for probability measures with
first marginal λ and second marginal µ, ν or π respectively. Note here that we call here the
probability measure π on R2 the second marginal of π̂, so that is in particular a probability
measure on R3. Finally δx stands for the Dirac measure in x.

We respect a special convention for conditional measures / disintegration / conditional
laws linked together with a consistent habit concerning the use of the variables u ∈ [0, 1]
, x ∈ R and y ∈ R for λ, µ and ν respectively. As an example (πx,·)x∈R is a family of
probability measures on R that is a disintegration of π with respect to µ. Similarly with
(µ̂u,·)u∈[0,1] , (µ̂·,x)x∈R and (ν̂·,y)y∈R . The measures (π̂u,·)u∈[0,1] are two dimensional so that
we also use the notation (π̂u,·,·)u∈[0,1] depending on the context. We will also make use of
(π̂u,x,·)u,x∈[0,1]×R for the disintegration in conditional laws on R of π̂ with respect to µ̂.

We will use integrated versions of the conditional measures (alias partial marginals) as
for instance π̂[0,u],·,· or µ̂[0,u],· , that are measures of mass u. For u = 1 we will recover the
full marginals π = π̂[0,1],· and µ = µ̂[0,1],·.

7.2. Spaces. We denote byP(E) andM(E) the space of probability measures, or, respec-
tively, of positive measures on a Polish space E. In the particular case E = R we simply
write P and M. We denote by Π(µ, ν) the space of measures with first marginal µ and
second marginal ν. The set ΠM(µ, ν) is the subset of martingale transport plans as defined
in §1.1. Those are two dimensional measures. We denote by Π̂M(µ̂, ν) the space of lifted
transport plans as in §1.2. It is a subspace of P(R3).

7.3. Orders on finite measures. The usual order on positive measures is �+ . It is defined
by µ �+ ν if and only if µ(A) ≤ ν(A) for every measurable set A, or equivalently if

∫
f dµ ≤∫

f dµ for every positive f : R→ R+. The convex order �C is defined for positive measure
of the same mass and finite first moment. We have µ �C ν if and only if

∫
f dµ ≤

∫
f dµ

for every convex function f : R → R. The stochastic order �sto is defined for positive
measures of the same mass. We have µ �sto ν if and only if

∫
f dµ ≤

∫
f dµ for every

increasing bounded function f : R → R. We introduce also �C,sto for positive measure of
the same mass and finite first moment. We have µ �sto ν if and only if

∫
f dµ ≤

∫
f dµ for

every increasing convex function f : R→ R. Finally, see §3.1.3 for �DC .

7.4. Operations on the measures. We denote by Fθ and Gθ the cumulative distribution
function and the quantile function of a one-dimensional probability measure θ, respec-
tively. More precisely Fθ(x) = θ((−∞, x]) and Gθ is the unique left continuous and in-
creasing function such that (Gθ)#λ = θ. Recall that Gθ(u) = infx∈R{Fθ(x) ≥ t}. We denote
by α × β the product measure of two measures. The restriction θ|A of θ to a set A is de-
fined by θ|A(·) = θ(A ∩ ·) on the same measured space as θ. If f is mapping, the notation
f#θ stands for the pushed-forward measure θ( f −1(·)). For instance (projx,y)#π̂ = π. We
denote by supp(α) the support of the measure α, that is the smallest closed set F with
α(R \ F) = 0. In Subsection 2.4 we define the central notion of shadow of µ ∈ M in
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ν ∈ M, that we denote by Sν(µ) (Note that, here, the measures must not be of mass one.
However µ(R) ≤ ν(R) because µ �C,+ ν.)

7.5. Random elements. The letter U stands for a uniform random variable on [0, 1]. It
has law λ and fits well with our notation u ∈ [0, 1]. We denote the standard Brownian
motion by (Bt)t≥0 . For random times τ0 and τ1 we denote by τ0 ∧ τ1 for the minimum
of the two. The random time interval ~0, τ~ , where τ is a positive random variable on a
probability space Ω, is the set {(ω, t) ∈ Ω × R+ : t < τ(ω))}.

7.6. Others. We denote the indicator functions by 1. For instance

1u≤p(u, x, y) =

1 if u ≤ p
0 otherwise.
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[3] J. Azéma and M. Yor. Une solution simple au problème de Skorokhod. In Séminaire de Probabilités, XIII
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Stat., 52(4):1823–1843, 2016.
[34] N. Juillet. Martingales associated to peacocks using the curtain coupling. Electron. J. Probab., 23:Paper No.

8, 29, 2018.
[35] H. Kellerer. Markov-Komposition und eine Anwendung auf Martingale. Math. Ann., 198:99–122, 1972.
[36] H. G. Kellerer. Integraldarstellung von Dilationen. In Transactions of the Sixth Prague Conference on Infor-

mation Theory, Statistical Decision Functions, Random Processes (Tech. Univ., Prague, 1971; dedicated to
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