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Abstract. We prove that no curvature-dimension bound CD(K, N) holds in
any Heisenberg group Hn. On the contrary the measure contraction property
MCP (0, 2n + 3) holds and is optimal for the dimension 2n + 3. For the
non-existence of a curvature-dimension bound, we prove that the generalized
“geodesic” Brunn-Minkowski inequality is false in Hn. We also show in a
new and direct way, (and for all n ∈ N\{0}) that the general “multiplicative”
Brunn-Minkowski inequality with dimension N > 2n + 1 is false.

Introduction

The Heisenberg group Hn turns up both in many parts of mathematics (see
[25]) and in other scientific or technical domains. A reason for this is that it is
the most basic and representative space of sub-Riemannian geometry, playing the
role of RN in Riemannian geometry. Many analytical tools have been developed in
both settings. In particular Hn and RN both have a doubling measure and satisfy
a Poincaré inequality. This last setting has proved to be very efficient as a minimal
framework permitting to generalize conformal geometry to some metric measure
spaces (see [13] and the references therein). Recent developments tend to improve
this analysis and introduce for some spaces analysis of second order. In particular
it was very challenging to define metric spaces with a lower bound on the curvature.
For sectional curvature, Alexandrov spaces were defined more than fifty years ago
(see [6]). For Ricci curvature an amazing theory has been recently developed inde-
pendently (but using essentially the same ideas) by Sturm (see [27], [28]) and by
Lott and Villani (see [17], [18]) in terms of geometric curvature-dimension condition
CD(K, N) (The definition is different from the curvature-dimension of Bakry and
Émery defined in [3]).

For many metric measure spaces, this very recent condition is stronger than
the condition that there exists a Poincaré inequality and the measure is doubling.
It uses an old probability tool: optimal transport of measure. This theory deals
with the so-called Monge-Kantorovich problem, namely the problem of transport-
ing one probability measure into another one whilst minimizing a transport cost
(usually the square of the distance). For Riemannian manifolds and two absolutely
continuous measures, McCann proved that there is a unique geodesic interpola-
tion between them (see [19]) and studied the particular expression it takes. From
this Cordero-Erausquin, McCann and Schmuckenschläger explained in [8] that the
optimal transport of measure has a particular form if the Ricci curvature of the
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manifold is bounded below. In particular the transported measure has a relative
entropy whose level of convexity along the transport depends on the lower bound
of the Ricci curvature. Inspired by this observation Lott, Sturm and Villani defined
the curvature-dimension condition CD(K, N) and developed a theory of synthetic
Ricci curvature in metric measure spaces. An other essential fact is that inspired
by [19], Ambrosio an Rigot recently proved in [1] that the geodesic solutions of
the Monge problem in the Heisenberg group Hn have a similar expression as the
one for the Riemannian manifolds. We answer this question in this paper whether
curvature-dimension condition also holds in this space.

The measure contraction property MCP (K, N) is another geometrical property
that involves curves in the space of measures on a given metric measure space. In a
certain sense, the definition of the MCP involves curves in the space of measures one
of whose extremities corresponds to a Dirac mass. The other measure is contracted
onto this Dirac mass and this contraction reveals some geometrical aspects of the
space. As CD, the measure contraction property can be seen as a generalization
of the Ricci lower bound of a Riemannian manifold. As written in the appendix,
under the hypothesis that there is almost surely a unique geodesic between two
points (this is the case in Hn) the curvature-dimension condition CD(K, N) implies
the measure contraction MCP (K, N) and this last property implies that the metric
measure space satisfies a Poincaré inequality and is doubling.

In this paper we prove the following theorem:

Main Theorem. Let n be a non negative integer. We consider (Hn, dCC ,L2n+1),
the n-th Heisenberg group with its Carnot-Carathéodory distance and the Lebesgue
measure of R2n+1. Then:

• For every N ∈ [1,+∞] and every K ∈ R, the geometric curvature-dimension
bound CD(K, N) does not hold in (Hn, dCC ,L2n+1).

• For (N,K) ∈ [1,+∞[×R, the measure contraction property MCP (K, N)
holds in (Hn, dCC ,L2n+1) if and only if N ≥ 2n + 3 and K ≤ 0.

A first surprise is that the geometric curvature-dimension and the measure con-
traction property behave differently. It is known that these properties are different
but they are quite close: For a N -dimensional Riemannian manifold (M, g), the
conditions CD(K, N) and MCP (K, N) are both equivalent to the property of hav-
ing a Ricci curvature greater than Kg (Compare also with the Bakry and Émery
curvature-dimension condition for the Laplace-Betrami operator in [2]). The sec-
ond surprise is the dimension 2n + 3 that appears in the second item. As far as I
know it has no classic significance and this may be the first time it arises in relation
to the Heisenberg group.

In the first section, we give a short presentation of the Heisenberg group Hn

(n ∈ N\{0}) and its geodesics. We also introduce two maps that will be helpful in
the following sections: the geodesic-inversion map I and the intermediate points
map M. At the beginning of the second section we give the definition of CD(K, N)
and MCP (K, N) for K = 0 which is the only interesting case. We prove the second
part of the Main Theorem in Theorem 2.3. The last section is devoted to a proof
of the fact that there is no geodesic Brunn-Minkowski inequality in the Heisenberg
group: it is the keystone of Theorem 3.3 which corresponds to the first part of the
Main Theorem. Remark 3.4 of this section deals with MCP and CD for non-zero
curvature parameters. This completes the Main Theorem. We also mention the
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multiplicative Brunn-Minkowski inequality and sketch the fact that this inequality
does not hold in any dimension strictly greater than the topological dimension
(i.e. 2n + 1). In the appendix, we sketch relations between the geodesic Brunn-
Minkowski inequality, CD(K, N), MCP (K, N) and the Poincaré inequality plus
doubling measure.

1. The Heisenberg Group and its Geodesics

1.1. The Heisenberg group. Let n be a non-negative integer. In this section we
give a short presentation of the Heisenberg group Hn as a metric measure space
equipped with the Lebesgue measure L2n+1 and Carnot-Carathéodory metric dCC .
As a set Hn can be written in the form R2n+1 ' Cn ×R and an element of H1 can
also be written as (z, t) = (z1, · · · , zn, t) where zk := xk + iyk ∈ C for 1 ≤ k ≤ n
and t ∈ R. The group structure of Hn is given by:

(z1, · · · , zn, t) · (z′1, · · · , z′n, t′) =

(
z1 + z′1, · · · , zn + z′n, t + t′ + 2

n∑
k=1

=(zkz′k)

)
where = denotes the imaginary part of a complex number. Hn is then a Lie group
with neutral element 0Hn := (0, 0) and inverse element (−z,−t). The set L =
{(z, t) ∈ Hn | z = 0} is the center of the group and will play an important role.
Throughout this paper, τp : Hn → Hn will be the left translation

τp(q) = p · q

where p, q ∈ Hn. This map is affine and its vectorial part has the determinant 1.
It follows that the Haar measure of Hn is the Lebesgue measure L2n+1 of R2n+1

which is left (and actually also right) invariant. For λ > 0, we denote by δλ the
dilation

δλ(z, t) = (λz, λ2t).

The measures behaviour under dilation is also good:

L2n+1(δλ(E)) = λ2n+2L2n+1(E)(1)

if λ ≥ 0 and E is a measurable set.
In order to define the Carnot-Carathéodory metric, we consider the Lie algebra

associated to Hn. This is the vector space of left-invariant vector fields. A basis for
this vector space is given by

(−→
X 1, · · · ,

−→
Xn,

−→
Y 1, · · · ,

−→
Y n,

−→
T
)

where

−→
Xk = ∂xk

+ 2yk∂t

−→
Y k = ∂yk

− 2xk∂t

−→
T = ∂t.

Roughly speaking, the Carnot-Carathéodory distance between two points p and q
is the infimum of the lengths of the horizontal curves connecting p and q. By a
horizontal curve we mean an absolutely continuous curve γ : [0, r] → Hn whose
derivative γ′(s) is spanned by {

−→
X 1(s), · · · ,

−→
Xn(s),

−→
Y 1(s), · · · ,

−→
Y n(s)} in almost all

points s. The length of this curve is then

length(γ) =
∫ r

0

‖γ′(s)‖ ds



4 NICOLAS JUILLET

where ‖
∑n

k=1(ak
−→
Xk + bk

−→
Y k)‖2 =

∑n
k=1(a

2
k + b2

k). The value of the Carnot-
Carathéodory distance between p and q is then

dCC(p, q) := inf length(γ)(2)

where the infimum is taken over all horizontal curves γ connecting p and q. The
Chow Theorem (see for example [20]) ensures that this set is not empty. The
Carnot-Carathéodory metric (like the Lebesgue measure) behaves well under trans-
lation τp and dilation δλ. It is left-invariant:

dCC(τpq, τpq
′) = dCC(q, q′)(3)

and

dCC(δλ(q), δλ(q′)) = λdCC(q, q′)(4)

for λ > 0. Because of (3), the Hausdorff measure (derived from dCC) is a Haar
measure. With the correct dimension, this measure is then proportional to the
Lebesgue measure. By (1) and (4), it follows that the Hausdorff dimension of
(Hn, dCC) is 2n + 2.

The metric space (Hn, dCC) is complete and separable. Another essential fact
is that the topology given by dCC is the usual topology on R2n+1. The Hausdorff
dimension is then different from the topological dimension (2n+2 6= 2n+1), which
is considered by some authors as the definition for a fractal set.

1.2. A geodesic space. Let us first give the terminology that we will use in this
paper.

Definition 1.1. Let (X, d) be a metric space. Let m0 and m1 be two points of this
set. An s-intermediate point between m0 and m1 is a point ms such that

d(m0,ms) = sd(m0,m1) and

d(ms,m1) = (1− s)d(m0,m1).

A geodesic from m0 to m1 is a continuous map γ defined on a segment [a, b] (with
a < b) such that for every a′, b′, c ∈ [a, b] with a′ ≤ c ≤ b′, the point γ(c) is a
c−a′

b′−a′ -intermediate point between γ(a′) and γ(b′). A normal geodesic is a geodesic
defined on [0, 1]. A local geodesic is a curve γ defined on an interval I, such that
for any point s in the interior of I there is an ε > 0 such that [s− ε, s + ε] ⊂ I and
γ |[s−ε,s+ε] is a geodesic. The metric space (X, d) is said to be a geodesic space if
there is a geodesic between any two points of X.

We now come to the geodesics of Hn. The infimum in (2) turns out to actually
be a minimum. We have the following proposition, which can be found in [1] for
example:

Proposition 1.2. The metric space (Hn, dCC) is a geodesic space. Moreover every
geodesic between two points p and q of Hn is horizontal and has length dCC(p, q).

The equations of the local geodesics of Hn have been known since Gaveau’s paper
[11]. In [1] Ambrosio and Rigot give explicitly the cut locus of local geodesics passing
through 0H. See also [20] for the similarities with the Dido problem. In this paper,
we will investigate how the measure is transported along the geodesics: to do this
we need to know their equations. Because the Carnot-Carathéodory distance and
hence the geodesics are left-invariant, it is enough to know the equations of the
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geodesics passing through 0H. Let (χ, ϕ) be in Cn×R. By a curve with parameters
(χ, ϕ) we mean the curve γχ,ϕ defined on R by

γχ,ϕ(s) =

{(
i e−iϕs−1

ϕ χ, 2|χ|2 ϕs−sin(ϕs)
ϕ2

)
∈ Cn × R if ϕ 6= 0

(sχ, 0) if ϕ = 0.
(5)

Here |χ| is
√
|χ1|2 + · · ·+ |χn|2. Obviously, the map (χ, ϕ, s) → γχ,ϕ(s) is real

analytic on Cn×R×R so all its partial derivatives are well defined and continuous.
The curve γχ,ϕ is horizontal and its length between a and b is |χ|(b − a). In this
paper, we denote by Γs the map

Γs(χ, ϕ) := γχ,ϕ(s).

In particular we will make use of it for s = 1. We note that Γs(χ, ϕ) is Γ1(sχ, sϕ).

x

y

χ

ϕ

Arc of length |χ|

Γ1(χ, ϕ)

Γs(χ, ϕ) = Γ1(sχ, sϕ)

Figure 1. Projection of γχ,ϕ onto the C-plane in H1.

The following proposition is proved in the paper [1] by Ambrosio and Rigot, and
stated in almost the same formulation: we just adapted it to our notations. Let us
recall that L is the set {(z, s) ∈ Hn | z 6= 0}.

Proposition 1.3. The normal geodesics starting from 0H are the restrictions to
[0, 1] of curves with parameters (χ, ϕ) for (χ, ϕ) ∈ Cn × [−2π, 2π]. In particu-
lar restrictions to [0, 1] of curves with parameters (χ, ϕ) with |ϕ| > 2π are not
normal geodesics. Conversely any restriction to [0, 1] of a curve with parameter
(χ, ϕ) ∈ Cn × [−2π, 2π] is a normal geodesic starting from 0H. Moreover we have
the following more precise description:
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• For any p = (0, t) ∈ L∗, normal geodesics from 0H to p are exactly the
restrictions to [0, 1] of the curves with parameters (χ, t

|t|2π) where χ is an

element of the sphere of vectors with norm
√

π|t|.
• For any p ∈ Hn\L there exists a unique normal geodesic connecting 0H

and p. This is the restriction to [0, 1] of a curve of parameters (χ, ϕ) with
|ϕ| < 2π.

Remark 1.4. The curves with parameters (a+ ib, v, r) from [1] (with |a|2 + |b|2 = 1)
have constant speed equal to one and are in fact curves with parameters (a + ib, v)
restricted to [0, r]. The restrictions to [0, 1] of the curves with parameters (χ, ϕ)
have length |χ| and are simply the curves s ∈ [0, 1] → expH(sχ, sϕ/4) where expH
is the Heisenberg-exponential map from the end of [1].

Remark 1.5. The map s → δs(p) is not a geodesic.

We give a corollary of Proposition 1.3 for local geodesics.

Corollary 1.6. The curve with parameters (χ, ϕ) is a local geodesic. More precisely
the restriction of γχ,ϕ to [a, b] is a geodesic if and only if (b−a)|ϕ| ≤ 2π. Moreover
this is the unique geodesic defined on [a, b] if and only if (b− a)|ϕ| < 2π.

Proof. The case a = 0 and γχ,ϕ(a) = 0H is contained in Proposition 1.3. To
complete the proof we compute the left translation of the curve mapping γ,ϕ(a) to
0H and obtain

γχ,ϕ(a)−1 · γχ,ϕ(a + s) = γχ′,ϕ(s)
with χ′ = e−iϕaχ. The proposition follows from this equation and the fact that
dCC is left-invariant. �

We set D1 := (Cn\0)×] − 2π, 2π[ and similarly Ds := (Cn\0)×] − 2sπ, 2sπ[
for s ∈ [0, 1]. The following proposition is a second and important corollary of
Proposition 1.3:

Proposition 1.7. The map Γ1 is a C∞-diffeomorphism from D1 to Hn\L. Simi-
larly for s ∈ [−1, 0[∪]0, 1[, the map Γs is a C∞-diffeomorphism from D1 to Γ1(D|s|).

Proof. For general s the assertion is a direct consequence of the case s = 1 and the
relation Γs(χ, ϕ) = Γ1(sχ, sϕ). With Proposition 1.3, it is clear that Γ1 is one-to-
one on D1 and it is C∞-differentiable because it is real analytic. We postpone the
proof that its Jacobian determinant does not vanish to Proposition 1.12 at the end
of this section. �

We introduce two helpful maps: the intermediate-points map M and geodesic-
inversion map I. The left-invariance of the Carnot-Carathéodory metric tells us
whether or not there is a unique normal geodesic between two given points. If
p = (z, t) and q = (z′, t′), the isometry τp−1 maps p to 0H and q to p−1·q = (z−z′, t′′)
for some t′′ in R. It follows from Proposition 1.3 that there is a unique normal
geodesic from p to q if and only if z 6= z′ or p = q. We will denote the open set
{(p, q) ∈ (Hn)2 | zp 6= zq} = {(p, q) ∈ (Hn)2 | p−1 · q /∈ L} by U . On this set we
define our first map.

Definition 1.8. We define the intermediate-points map M from the set U × [0, 1] to
Hn by

M(p, q, s) = τp ◦ Γs ◦ Γ−1
1 ◦ τp−1(q).
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The point M(p, q, s) is actually the unique s-intermediate point between p and
q. It is a s-intermediate point when p = 0H because Γs ◦ Γ−1

1 (γχ,ϕ(1)) is γχ,ϕ(s)
for (χ, ϕ) ∈ D1. The general case follows from the left-invariance of the Carnot-
Carathéodory metric. Moreover M(p, q, s) is the unique s-intermediate point be-
tween p and q because there is a unique normal geodesic from p to q (the pair
(p, q) is in U) and because the s-intermediate points in a geodesic space lie on the
geodesics connecting two points.

In the following sections, we will extend M in (two) different ways to (Hn)2 ×
[0, 1]. Using the proposition 1.7 and recalling that τp is affine, we have the following
regularity lemma.

Lemma 1.9. The map M is measurable. It is C∞ on U×]0, 1[. The curve s ∈
[0, 1] →M(p, q, s) is the unique normal geodesic from p to q.

Let us now introduce the geodesic-inversion map I.

Definition 1.10. We define the geodesic-inversion map I on Hn\L by I(p) = Γ−1 ◦
Γ−1

1 (p).

The name comes from the fact that for (χ, ϕ) ∈ D1 and s ∈ [−1, 1] we have by
Proposition 1.7:

I(γχ,ϕ(s)) = I(Γ(sχ, sϕ))

= Γ−1 ◦ Γ−1
1 (Γ1(sχ, sϕ))

= Γ−1(sχ, sϕ)

= γχ,ϕ(−s).

It follows that I ◦I is the identity on Hn\L. That is why for any p ∈ Hn we will call
(p, I(p)) a pair of I-conjugate points. We now establish the connection between M
and I.

Lemma 1.11. Let p be in Hn\L. Then M(I(p), p, 1/2) is well defined and is 0H
if and only if the ϕ-coordinate of Γ−1

1 (p) verifies |ϕ| < π , i.e when p ∈ Γ1(D1/2).

Proof. Proposition 1.3 says that p = Γ1(χ, ϕ) for some |ϕ| < 2π. Moreover the
definition of I implies that I(p) = Γ−1(χ, ϕ). Therefore we have to say when
M(γχ,ϕ(−1), γχ,ϕ(1), 1/2) exists and if it is 0H.

It follows from equation (5) that the z-coordinates of γχ,ϕ(−1) and γχ,ϕ(1) are
equal if and only if |ϕ| = π. Therefore (γχ,ϕ(−1), γχ,ϕ(1)) ∈ U if and only if |ϕ| 6= π.
In this case there is a unique geodesic δ on [−1, 1] between the two points and we
can define the midpoint

δ(0) = M(δ(−1), δ(1), 1/2) = M(γχ,ϕ(−1), γχ,ϕ(1), 1/2).

If |ϕ| < π then 2|ϕ| < 2π. In this case the curve δ is the restriction of γχ,ϕ

to [−1, 1] because by Corollary 1.6 both maps are the unique geodesic defined on
[−1, 1] that goes from I(p) to p. The midpoint is then δ(0) = γχ,ϕ(0) = 0H.

If π < |ϕ| < 2π we argue by contradiction. Assume that δ(0) = 0H. Then
by Proposition 1.3, the curve δ |[0,1] is the unique normal geodesic from 0H to
p = γχ,ϕ(1) and s ∈ [0, 1] → δ(−s) is the unique normal geodesic between 0H and
I(p) = γχ,ϕ(−1). It follows that δ is γχ,ϕ on [0, 1] and [−1, 0] contradicting the fact
that |ϕ| > π. (For 2|ϕ| > 2π, Corollary 1.6 shows that the restriction to [−1, 1]
of γχ,ϕ is not a geodesic and consequently can not be δ.) Hence M(p, I(p), 1/2) is
not 0H. �
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As mentioned above, we present the computation of the Jacobian determinant.
To prove Proposition 1.7, we only need to prove that the Jacobian of Γ1 does
not vanish. This fact is mentioned in [1] where the authors state that Γ1 is a
diffeomorphism (in fact in this paper χ is given by its polar coordinates (|χ|, χ

|χ| )).
The result of the calculation is given for H1 in the paper of Monti (see [21]). We
now give all the details of this computation for every n ∈ N\{0} because we do
not only need the fact that the Jacobian determinant does not vanish, but also its
exact value.

Proposition 1.12. The Jacobian determinant of Γ1 is given by

Jac(Γ1)(χ, ϕ) =

22n+2|χ|2
(

sin(ϕ/2)
ϕ

)2n−1
sin(ϕ/2)−(ϕ/2) cos(ϕ/2)

ϕ3 for ϕ 6= 0,

|χ|2/3 otherwise.

It does not vanish on D1.

Proof. We start by writing exactly what Γ1 is:

Γ1(χ, ϕ) =

{(
i e−iϕ−1

ϕ χ1, · · · , i e−iϕ−1
ϕ χn, 2|χ|2 ϕ−sin(ϕ)

ϕ2

)
if ϕ 6= 0,

(χ, 0) otherwise

where |χ|2 = |χ1|2 + · · · + |χn|2. We start by calculating Jac(Γ1) = det(DΓ1) for
ϕ 6= 0. The case ϕ = 0 is obtained as a limit.

We first have to compute the real derivative of Γ1, i.e. the derivative of Γ1 as a
map from R2n+1 to R2n+1. We write DΓ1 as a matrix

(
P C
R q

)
where the block P is

made of the 2n first rows and columns. If we identify complex numbers with 2× 2
matrices (a + ib is

(
a −b
b a

)
), we can write P as an n× n complex matrix i e−iϕ−1

ϕ In

where In is the identity matrix of Mn(C). The column C is ( e−iϕ

ϕ −i e−iϕ−1
ϕ2 )χ seen as

a R2n vector, the row R is (4x1
ϕ−sin(ϕ)

ϕ2 , 4y1
ϕ−sin(ϕ)

ϕ2 , · · · , 4xn
ϕ−sin(ϕ)

ϕ2 , 4yn
ϕ−sin(ϕ)

ϕ2 ),

and the real number q is 2|χ|2
(

2sin(ϕ)
ϕ3 − 1+cos(ϕ)

ϕ2

)
.

It is difficult to compute directly the determinant of
(

P C
R q

)
in any point. Because

of this we now prove that if |χ| = |χ′|, then Jac(Γ1)(χ, ϕ) = Jac(Γ1)(χ′, ϕ). Let
T be a unitary C-linear map so that T (χ) = χ′. Consider now T ′ defined by
T ′(χ, ϕ) = (T (χ), ϕ). Then it is not difficult to see that Γ1 ◦T ′ = T ′ ◦Γ1. It follows
that (Jac(Γ1)◦T ′)·detR(T ′) = detR(T ′)·Jac(Γ1) and hence we have Jac(Γ1)(χ, ϕ) =
Jac(Γ1)(χ′, ϕ). We use this relation to simplify the computation by choosing χ′ =
(0, · · · , 0, |χ|). With this new vector χ′, most of the entries of C and R are equal
to zero, so we can calculate the determinant of DΓ1 =

(
P C
R q

)
by blocks. We get

that Jac(Γ1)(χ, ϕ) is the product of∣∣∣∣ sin(ϕ)/ϕ (1− cos(ϕ))/ϕ
(cos(ϕ)− 1)/ϕ sin(ϕ)/ϕ

∣∣∣∣n−1

with ∣∣∣∣∣∣∣∣
sin(ϕ)/ϕ (1− cos(ϕ))/ϕ |χ|( cos(ϕ)

ϕ − sin(ϕ)
ϕ2 )

(cos(ϕ)− 1)/ϕ sin(ϕ)/ϕ |χ|(− sin(ϕ)
ϕ − cos(ϕ)−1

ϕ2 )

4|χ|ϕ−sin(ϕ)
ϕ2 0 2|χ|2

(
2 sin(ϕ)

ϕ3 − 1+cos(ϕ)
ϕ2

)
∣∣∣∣∣∣∣∣ .
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This is just

2n−1

(
2 sin2(ϕ/2)

ϕ2

)n−1

2|χ|2

∣∣∣∣∣∣∣
sin(ϕ)/ϕ (1− cos(ϕ))/ϕ cos(ϕ)

ϕ

(cos(ϕ)− 1)/ϕ sin(ϕ)/ϕ − sin(ϕ)
ϕ

2ϕ−sin(ϕ)
ϕ2 0 1−cos(ϕ)

ϕ2

∣∣∣∣∣∣∣
which is

22n+2|χ|2
(

sin(ϕ/2)
ϕ

)2n−1 sin(ϕ/2)− (ϕ/2) cos(ϕ/2)
ϕ3

.

The continuous limit at ϕ = 0 is |χ|2/3.
It remains to show that Jac(Γ1) does not vanish on D1. This is clear for ϕ = 0.

Otherwise we have to prove that the odd function f(u) := sin(u) − u cos(u) does
not vanish for u ∈]0, π[. f(0) = 0. The first derivative of f is the map f ′(u) =
u sin(u) which is positive on ]0, π[. On this interval f is non-decreasing and does
not vanish. �

We recall that for 0 < |s| ≤ 1 we have Γs(χ, ϕ) = Γ1(sχ, sϕ) and we get the
following corollary.

Corollary 1.13. Let 0 < |s| ≤ 1. The Jacobian determinant of Γs on D1 is

Jac(Γs)(χ, ϕ) =

22n+2s|χ|2
(

sin sϕ
2

ϕ

)2n−1
sin sϕ

2 − sϕ
2 cos sϕ

2
ϕ3 for ϕ 6= 0,

s2n+3|χ|2/3 otherwise.

2. The Measure Contraction Property in Hn

In general metric measure spaces, there are two conditions which can be thought
of as replacements for the Ricci curvature bounds of differential geometry: the
geometric curvature-dimension CD(K, N) and the measure contraction property
MCP (K, N). In our case where the geodesic between two points is almost surely
unique, curvature-dimension CD(K, N) is more restrictive than the measure con-
traction property MCP (K, N), although it was not clear for a long time whether
the two properties are equivalent. Moreover, in this situation (when there is almost
surely a unique normal geodesic between two points), the measure contraction prop-
erty implies a Poincaré inequality and the doubling property for metric measure
spaces. This is shown in [32] and [18]. Metric measure spaces verifying a Poincaré
inequality and the doubling property have proved to be a perfect setting for analysis
with minimal hypotheses. A good reference on this theory is the book by Heinonen
(see [13]). It is possible to define a differentiable structure on such space, as proved
in the Cheeger’s paper [7] or to define Sobolev spaces with interesting properties
(see [7],[12] and [26]). Another area of application domain of the Poincaré inequal-
ity is conformal geometry where it enables to analyze the quasi-conformal maps
between metric spaces (see the survey article [5]). Some of the more exotic exam-
ples of doubling metric measure spaces with a Poincaré inequality are the boundary
of hyperbolic buildings (see [4]), some Cantor-like sets with worm-holes (see [14]
and the erratum [15]) and the Heisenberg group (see [29]).

We now give the definition of the curvature-dimension CD(0, N) and of the
measure contraction property MCP (0, N). We recall that our aim is to prove
that the first property does not hold for any N whereas the Heisenberg group
Hn verifies MCP (0, 2n + 3) where the bound 2n + 3 is sharp. The case where
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K 6= 0 in not really interesting in the Heisenberg group. We will see why and
which properties hold in Remark 3.4. Let (X, d, µ) be a metric measure space. The
measure µ is assumed to be locally finite and defined on the Borel σ-algebra of
(X, d). We assume moreover that this space is separable and complete (a Polish
space). The curvature-dimension condition CD(K, N) is a geometric condition
on the optimal transport of measure between any pair of absolutely continuous
probability measures on (X, d, µ). For N ≥ 1, the curvature-dimension condition
CD(0, N) roughly speaking states that the functional SN (· | µ) is convex on the
L2-Wasserstein space P2. Here SN (· | µ) is the relative Rényi entropy functional
defined for a measure m with density ρm ∈ L1(µ) by:

SN (m | µ) = −
∫

X

ρ1−1/N
m dµ.

The basic invariant in optimal transport theory is the distance between two
probability measures m0 and m1 known as the L2-Wasserstein distance. This is
defined by

dW (m0,m1) =

√
inf
q

(∫
X×X

d2(x, y)dq(x, y)
)

where the infimum is taken over all couplings q of m0 and m1. In a Polish space
such as X, there is a coupling that attains the infimum. It is said to be an optimal
coupling. Let P2(X) be the space of probability measures m on X with second
moment (i.e.

∫
X

d(x0, x)2dm(x) < +∞ for some x0 ∈ X). With the distance
dW the space P2(X) is also a complete and separable metric space. Thus it is
possible to speak about geodesics in (P2(X), dW ) and actually if X is geodesic, P2

is geodesic as well. For a detailed presentation, and more about optimal transport,
see [30] or [31]. We now give the definition of CD(0, N). It is a specific case of the
curvature-dimension condition introduced by Sturm in [28].

Definition 2.1. Let N ≥ 1. We say that the curvature-dimension condition CD(0, N)
holds in (X, d, µ) if for every pair (m0,m1) of absolutely continuous measure of
P2(X), there is a geodesic (ms)s∈[0,1] connecting m0 and m1 and consisting of
absolutely continuous measures ms that verifies the following condition:

SN (ms | µ) ≤ (1− s)SN (m0 | µ) + sSN (m1 | µ).(6)

We will see in the next section (Theorem 3.3) that this property does not hold
in the Heisenberg group.

Remark 2.2. In the paper by Ambrosio and Rigot (see [1]), the authors implicitly
prove that there is a unique normal geodesic between two absolutely continuous
measures of P2(Hn). As the interpolated measures are absolutely continuous too
(see Remark 2.9) for Hn we can simply reformulate Definition 2.1 as the convexity
of SN along these (unique) geodesics.

The measure contraction property MCP (0, N) (see [28], [18], [23]) is a condition
on metric measure spaces (X, µ, d). Its formulation is much simpler if there exists
a measurable map

N : (x, y, s) ∈ X ×X × [0, 1] → X

such that for every x ∈ X and µ-a.e y ∈ X, the curve s ∈ [0, 1] → N (x, y, s) is the
unique normal geodesic from x to y. Then the space (X, d, µ) satisfies MCP (0, N)
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if and only if for almost every x ∈ X, every s ∈ [0, 1] and every µ-measurable set E

sNµ(N−1
x,s (E)) ≤ µ(E)(7)

where Nx,s(y) := N (x, y, s).
In Definition 1.8, we defined the map M on U × [0, 1]. We now extend it to

(Hn)2 × [0, 1] by M(p, q, s) = A if (p, q) /∈ U (We will use another extension in
the next section). By Lemma 1.9, we see that M verifies the conditions of N
on measurability and almost sure uniqueness of geodesics. We state in the next
theorem that the property (7) also holds using M instead of N .

Theorem 2.3. The measure contraction property MCP (0, N) holds in Hn if and
only if N ≥ 2n + 3.

We split the proof in two parts: in Proposition 2.4 we prove the easier part
(N < 2n+3) and in Proposition 2.5 we prove the more difficult part which is based
on a concavity statement (Lemma 2.6).

Proposition 2.4. The measure contraction property MCP (0, N) does not hold in
Hn if N < 2n + 3.

Proof. Let N be strictly smaller than 2n + 3. As the Lebesgue measure L2n+1, the
Carnot-Carathéodory distance dCC and geodesics are left-invariant, it follows that
M(τpq, τpq

′, s) = τp ◦M(q, q′, s) for any p, q and q′ in Hn. If the relation (7) does
not hold at some B ∈ Hn, then it does not hold in any point. This is why it is
enough to consider what happens when we contract from the point 0H. This is why
it is enough to consider what happens when we contract from the point 0H. Let
p be the point ((1, 0, · · · , 0), 0) = Γ1((1, 0, · · · , 0), 0) and Kr the (Euclidian) ball
B(p, r) with center p and radius r < 1. For a fixed s in ]0, 1[, we define the set
Er by M0H,s(Kr) where M0H,s is the map M(0H, ·, s). As B(p, r) is contained in
Hn\L where M0H,s is one-to-one and differentiable, we have:

L2n+1(Er) =
∫

Kr

Jac (M0H,s(q)) dL2n+1(q).

But from the definition of M in Definition 1.8 we deduce Jac(M0H,s)(p) = Jac(Γs)
Jac(Γ1)

◦
Γ−1

1 (p). This is s2n+3 by Proposition 1.12 and Corollary 1.13, plus the fact that the
ϕ-coordinate of p is 0 (see equation (10)). It follows that Jac(M0H,s)(p) < sN . By
continuity, we can find a small enough radius r > 0 such that Jac(M0H,s)(q) < sN

holds for every q ∈ Kr. For this choice of r we get that sNL2n+1(Kr) > L2n+1(Er)
which contradicts MCP (0, N). �

Proposition 2.5. The measure contraction property MCP (0, N) holds in Hn if
N ≥ 2n + 3.

Proof. Let N be greater than 2n + 3. As in the proof of Proposition 2.4, we only
need to prove (7) for x = 0H. Let E be a µ-measurable set with non-zero measure
and s ∈]0, 1[. The map M0H,s := M(0H, ·, s) maps the line L on 0H (because of the
definition of our extension) but is one-to-one on Hn\L where it equals Γs ◦ Γ−1

1 . If
we denote F := M−1

0H,s(E), then we have:

qL2n+1(E) ≥
∫

F\L
Jac(M0H,s)(q)dL2n+1(q).(8)
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From our expression for M0H,s on Hn\L we get that Jac(M0H,s) = Jac(Γs)
Jac(Γ1)

◦ Γ−1
1 .

But we know the expression of these Jacobian determinants by Proposition 1.12
and Corollary 1.13. Hence to get (7), since L(L) = 0, it is enough to prove that

Jac(Γs)
Jac(Γ1)

(χ, ϕ) = s

(
sin(sϕ/2)
sinϕ/2

)2n−1( sin(sϕ/2)− (sϕ/2) cos(sϕ/2)
sin(ϕ/2)− (ϕ/2) cos(ϕ/2)

)
≥ sN(9)

when (χ, ϕ) ∈ D1 (in the case ϕ 6= 0). For ϕ = 0 this relation must be changed to

Jac(Γs)
Jac(Γ1)

(χ, 0) = s2n+3 ≥ sN(10)

which is obviously true. Both sides of (9) are 0 at 0 and 1 at 1. It is the same
if we raise these expressions to the power of 1/N . Hence, we want to prove that

s →
(

Jac(Γs)
Jac(Γ1)

)1/N

(χ, ϕ) lies above the diagonal between (0, 0) and (1, 1). That is
in particular true if this function is concave in s for each (χ, ϕ) ∈ D1. This last
assertion is equivalent to the 1/N -concavity (1/N -concavity means positivity and
concavity when raised to the power of 1/N) on ]0, π[ of the even function g2n−1

defined for k ∈ N by gk(u) = u sink(u)(sin(u) − u cos(u)) . In the next lemma, we
will prove a stronger statement: gk is 1/(k + 4)-concave. It follows that g2n−1 is
1/(2n + 3)-concave which implies that it is 1/N -concave because N ≥ 2n + 3.

Lemma 2.6. For all k ∈ N the function gk is (k + 4)−1-concave on ]0, π[.

Proof. We will prove this lemma by induction. We begin by proving that g0 is 1/4-
concave. For simplicity we will denote g = g0. This function is positive because
it is the product of Id : u → u with the function f that we met in the proof of
Proposition 1.12. Its first derivative is g′(u) = (1 + u2) sin(u) − u cos(u) and its
second derivative is g′′(u) = 3u sin(u) + u2 cos(u). After differentiating one more
time it follows that g is concave on [α, π] where α can be calculated to be smaller
than 2.46. It is true that 1/4-concavity is a weaker statement than concavity but
we want it on all [0, π]. It is equivalent to the negativity of (g′′g−g′2)+ 1

4g′2. A first
step is to prove the weaker relation g′′g − g′2 ≤ 0 which is the differential version
of log-concavity (g positive and log(g) concave). Both factors of g are log-concave
: Id is concave and

f ′′f − f ′2 = (sinu + u cos u) (sinu− u cos u)− (u sinu)2 = sin2 u− u2 ≤ 0.

It follows that g is log-concave. Alternatively we can write

g′′g − g′2 = (Id)2(f ′′f − f ′2) + (Id′′ Id− Id′2)f2

where both terms of the sum are negative on ]0, π[. For 1/4-concavity, we have to
prove the negativity of (g′′g − g′2) + 1

4g′2, which is

u2
[
sin2(u)− u2

]
+ [0− 1] (sin(u)− u cos(u))2

+
1
4
[
(1 + u2) sin(u)− u cos(u)

]2
(11)

for u ∈ [0, π]. It is quite difficult to prove that this expression is negative. We
replace the last expression by a pointwise greater polynomial. To do this, we
replace cos and sin in each term by the beginning of their Taylor series. We start
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with 1
4g′2(u). It is constructed from g′ which is positive for u ∈ [0, π]. On this

interval, we have:

0 ≤ (1 + u2) sin(u)− u cos(u) ≤ (1 + u2)(u− u3/6 + u5/120)− u(1− u2/2).

For 0 ≤ u ≤ 2
√

2, we have

sin(u)− u cos(u) ≥ (u− u3/6)− u(1− u2/2 + u4/24) = u3/3− u5/24 ≥ 0

and finally, for u ∈ [0, π] we have

0 ≤ sin(u) ≤ u− u3/6 + u5/120.

We can then estimate (11) for u ≤ 2
√

2:

u2
[
sin2(u)− u2

]
− (sin(u)− u cos(u))2

+
1
4
[
(1 + u2) sin(u)− u cos(u)

]2
=u2

[
(u− u3/6 + u5/120)2 − u2

]
− (u3/3− u5/24)2

+
1
4
((1 + u2)(u− u3/6 + u5/120)− u(1− u2/2))2

=− 1
30

u8 +
421

57600
u10 − 17

28800
u12 +

1
57600

u14

≤u8

((
8

57600
− 17

28800

)
(u2)2 +

421
57600

u2 − 1
30

)
≤ 0.

So we have 1/4-concavity of g on [0, 2
√

2]. But we already proved that g is concave
on [2.46, π]. Thus g is 1/4-concave on [0, π] which is the reunion of the two intervals.

Let us now prove by induction that gk+1 is 1/(k + 5)-concave. For this let us
assume that gk is 1/(k + 4)-concave for some integer k. Then gk+1 = gk · sin. We
have now to prove the negativity of

(
(gk sin)′′(gk sin)− (gk sin)′2

)
+

1
k + 5

(gk sin)′2

=(g′′kgk − g′2k ) sin2 +(− sin sin− cos2)g2
k +

1
k + 5

(gk sin)′2

=(g′′kgk − g′2k ) sin2−g2
k +

g′2k sin2 +2gkg′k sin cos +g2
k cos2

k + 5

=(g′′kgk − g′2k +
g′2k

k + 4
) sin2−g′2k sin2

k + 4
− g2

k +
g′2k sin2 +2gkg′k sin cos +g2

k cos2

k + 5

=(g′′kgk − g′2k +
g′2k

k + 4
) sin2 +

−g′2k sin2

(k + 4)(k + 5)
+ g2

k

(
cos2

k + 5
− 1
)

+
2gkg′k sin cos

k + 5
.

The first term T1 in the last sum is negative because of the 1/(k + 4)-concavity of
gk. The second term T2 is clearly negative. The third term T3 is also negative. It
remains to prove that |T4| ≤ |T2| + |T3| where T4 is the last term. We compare
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|T4|2 and (2
√
|T2||T3|)2 ≤ (|T2|+ |T3|)2:

4|T2||T3| − T 2
4

=4
[

g′2k sin2

(k + 4)(k + 5)

] [
g2

k

(
1− cos2

k + 5

)]
−
[
2gkg′k sin cos

k + 5

]2
=4g2

kg′2k sin2

[
k+5−cos2

k+4 − cos2

(k + 5)2

]
≥ 0.

�

�

Remark 2.7. The exponent 2n+3 in Theorem 2.3 can appear surprising because we
should have expected the topological dimension (2n+1) or the Hausdorff dimension
(2n + 2) instead of 2n + 3. We now illustrate how this exponent arises for the
unit ball BH

1 , of H1. For 0 < s < 1, the contraction M0H,s(BH
1 ) is certainly

contained in the Heisenberg ball BH
s with center 0H and radius s. This ball is the

dilation δs(BH
1 ) of the unit ball and its volume is s4L(BH

1 ). Nevertheless, MCP (0, 5)
(the best relation in H1) says that L(M0H,s(BH

1 )) ≥ s5L(BH
1 ). Rescaling, we get

L(δ1/s(M0H,s(BH
1 ))) > sL(BH

1 ) where δ1/s(M0H,s(BH
1 )) is a subset of BH

1 . It is
possible to interpret the factor s appearing in this expression on writing down an
explicit expression for this subset. It is actually the subset of points whose angle
ϕ in the (χ, ϕ)-coordinate is between −s2π and s2π. Indeed in equation (5), we
see that ϕ is linearly increasing on geodesic paths starting from 0H and moreover
the dilation δ1/s does not change the value of ϕ. It is possible to calculate that
the Lebesgue measure of L(δ1/s(M0H,s(BH

1 )) is equivalent to sπ2

3 for s close to 0,
which justifies the factor s. See the figure 2 which shows the set {y = 0}. The sets
BH

1 and δ1/s(M0H,s(BH
1 )) are then obtained by rotating this figure around the ax

L = {(0, 0)} × R.

t

x
∼ s

2π

3

Figure 2. The sets BH
1 and δ1/s(M0H,s(BH

1 )).
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Remark 2.8. The measure contraction property MCP (0, 2n + 3) can be directly
applied to the Heisenberg group Hn in to prove a (1, 1)-Poincaré inequality. To do
this we follow the plan given at the end of the book by Saloff-Coste (see [24, 5.6.3])
for manifolds with a lower Ricci bound. This can be easily adapted: we obtain a
constant 22n+3/n. For every p ∈ Hn, r > 0 and smooth function f we have:∫

BH(p,r)

|f(q)− fB | dL(q) ≤ 22n+3

n
r

∫
BH(p,2r)

|∇Hf(q)|H dL(q)

where BH(p, r) is the dCC-ball with center p and radius r, where

fB =
1

L(B)

∫
BH(p,r)

f(q) dL(q)

and ∇Hf is the Heisenberg gradient defined by

∇Hf =
n∑

k=1

(
−→
Xk · f)

−→
Xk + (

−→
Y k · f)

−→
Y k.

A Poincaré inequality on Hn was first proved by Varopoulos in [29].

Remark 2.9. In [10], Figalli and the author use MCP (0, 2n+3) to answer positively
an open question of Ambrosio and Rigot [1, section 7(c)]. In Hn, the measures
interpolated by optimal transport between an absolutely continuous measure and
an other measure are absolutely continuous as well. As a consequence Pac

2 ⊂ P2,
the subspace of absolutely continuous measure is geodesic.

3. The Brunn-Minkowski Inequalities in Hn

The classical Brunn-Minkowski inequality in RN (see [9, 3.2.41] for instance)
is a very useful geometric lower bound on the measure of the Minkowski sum (i.e
the usual sum of two sets in RN ) of two compact sets in RN . This inequality is
equivalent to the following statement: given two compact sets K0 and K1, in RN

and s ∈ [0, 1] then

(LN )1/N (sK1 + (1− s)K0) ≥ s(LN )1/N (K1) + (1− s)(LN )1/N (K0)

with sK1 + (1− s)K0 = {sk1 + (1− s)k0 ∈ RN | k1 ∈ K1 k0 ∈ K0}. We want to
give a meaning to sK1 +(1− s)K0 in a geodesic metric space. For this we consider
the set of the s-intermediate points from a point k0 in K0 to a point k1 in K1. We
call this set the s-intermediate set and denote it by “sK1 + (1− s)K0”.

Let (X, d, µ) be a metric measure space and N be greater than 1. We say that the
geodesic Brunn-Minkowski inequality BM(0, N) holds in (X, d, µ) if the inequality

µ1/N (“sK1 + (1− s)K0”) ≥ sµ1/N (K1) + (1− s)µ1/N (K0)(12)

is true for every pair compact sets K0 and K1 of non-zero measure. Here µ(“sK1 +
(1− s)K0”) will denote the outer measure of “sK1 + (1− s)K0” if the latter is not
measurable. There is also a “multiplicative” Brunn-Minkowski inequality that has
been introduced in the Heisenberg group by Monti in [22] (see also [16]). We deal
with this inequality in Remark 3.5.

Remark 3.1. Let K be a real number and N ≥ 1. The general definition of
CD(K, N) (see [28]) involves a modification of the geometric inequality (6) by
factors roughly depending on the Wasserstein distance between the measures m0
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and m1. These factors also appear in MCP (K, N) and CD(K, N) in the gener-
alization of the inequalities (7) and (12). These three geometric properties have a
common hierarchy when K and N vary: the property for (K, N) implies the prop-
erty for (K ′, N) for all K ′ < K. Similarly for a fixed curvature K, the property
(K, N) implies the property (K, N ′) for all N ′ > N . Nevertheless a priori there
is no optimal pair (K, N) when the curvature and the dimension both vary (see
[23],[28]).

It is proved in [28] that the curvature-dimension property CD(0, N) implies
BM(0, N). In order to prove that CD(0, N) does not hold in Hn, we will prove
that no geodesic Brunn-Minkowski inequality holds in this space.

In Hn it will be useful to interpret the s-intermediate set using the intermediate-
points map M. To do this we extend M in a way different from that used in
the last section. Here M is no longer a map but a multi-valued map defined on
(Hn)2×]0, 1[ by

M(p, q, s) = {ms ∈ Hn | dCC(p, q) =
1
s
dCC(p, ms) =

1
1− s

dCC(ms, q)}.

If (p, q) is in U , we identify the single-valued set M(p, q, s) with its unique element,
which is coherent with Definition 1.8. To get more information on the values taken
by M on (Hn)2\U×]0, 1[, it is enough to use Proposition 1.3 and left translations.
We will now prove the following lemma:

Lemma 3.2. There are two compact sets K and K ′ such that

L2n+1(K) = L2n+1(K ′) > L2n+1(M1/2(K, K ′))

where M1/2(K, K ′) = {M(k, k′, 1/2) ∈ Hn | k ∈ K and k′ ∈ K ′}.

Let N be a dimension greater than 1. We can raise the inequality in Lemma 3.2
to the power 1/N and using (12) we obtain as a corollary the following theorem.

Theorem 3.3. The geodesic Brunn-Minkowski inequality BM(0, N) and the geo-
metric curvature-dimension CD(0, N) do not hold for any N .

We now give a proof of Lemma 3.2.

Proof. Let us consider a simple geodesic: the curve of parameter ((1, · · · , 0), 0) on
the interval [−1, 1]. As 2 ·0 < 2π Corollary 1.6 says that this is the unique geodesic
defined on [−1, 1] from p′ = (−1, 0, · · · , 0) to p = (1, 0, · · · , 0): the points p and p′

are I-conjugate and have midpoint 0H. Actually M1/2 := M(·, ·, 1/2) is simply the
midpoint map. On U this map is single and is directly defined by setting s = 1/2
in Definition 1.8:

M1/2(q′, q) = τq′ ◦ Γ1/2 ◦ Γ−1
1 ◦ τq′−1(q).(13)

We will now use the geodesic-inversion map introduced in the first section. We recall
that Lemma 1.11 exactly tells us exactly when the midpoint of two I-conjugate
points in U is 0H. For p and p′ this is the case so p and p′ are in the open set
Γ1(D1/2). Our counterexample consists of a small compact ball Kr := B(p, r) with
center p and (Euclidian) radius r and K ′

r = I(Kr): we then consider the set of
midpoints between Kr and K ′

r. By continuity we can choose r small enough such
that Kr ⊂ Γ1(D1/2) and Kr ×K ′

r ⊂ U .
We have to show that K ′

r has the same measure as Kr and this measure is greater
than the measure of M1/2(Kr,K

′
r). The first claim is actually straightforward: Γ1
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and Γ−1 are diffeomorphisms between the same sets (Proposition 1.7) and have the
same Jacobian determinant up to sign (Corollary 1.13). Hence

L2n+1(K ′
r) = L2n+1(Γ−1(Γ−1

1 (Kr))) = L2n+1(Γ1(Γ−1
1 (Kr))) = L2n+1(Kr).

The key to the second claim is the fact that

M1/2(K ′
r,Kr) =

⋃
a,b∈Kr

M1/2(I(a), b) =
⋃

a,b∈Kr

M1/2(I(a), a + (b− a)).(14)

As Kr ⊂ Γ1(D1/2), Lemma 1.11 shows that if a ∈ Kr, then M1/2(I(a), a) =
0H. Therefore the mid-set M1/2(K ′

r,Kr) has very small measure. We will use
differentiation tools to quantify this idea. By Lemma 1.9, M1/2 is C∞-differentiable
on U . For any q ∈ Hn\L let M1/2

q be the map M(q, ·, 1/2). We now write

M1/2(I(a), a + (b− a))(15)

=0 + DM1/2
I(a)(a).(b− a)

+
[
M1/2 (I(a), a + (b− a))−DM1/2

I(a)(a).(b− a)
]

=DM1/2
p′ (p).(b− a) +

[(
DM1/2

I(a)(a)−DM1/2
p′ (p)

)
.(b− a)

]
+
[
M1/2 (I(a), a + (b− a))−DM1/2

I(a)(a).(b− a)
]
.

For a and b close to p, the two last terms of the last sum are small and can
be bounded using the smoothness of M in the differential calculus of R2n+1 (see
Lemma 1.9): when r tends to zero,

sup
a,b∈Kr

∣∣∣(DM1/2
I(a)(a)−DM1/2

p′ (p)
)

.(b− a)

+ M1/2(I(a), a + (b− a))−DM1/2
I(a)(a).(b− a)

∣∣∣ = o(r).

Therefore, as Kr − Kr = {q ∈ R2n+1 | q = b − a a, b ∈ B(p, r)} = B(0, 2r), the
relations (14) and (15) give the following set inclusion

M1/2(K ′
r,Kr) ⊂ DM1/2

p′ (p).(B(0, 2r)) + B(0, ε(r)r)(16)

where ε(r) is a non-negative function which tends to zero when r tends to zero. We
observe now that the measure of the right-hand set is equivalent to the measure of
DM1/2

p′ (p).(B(0, 2r)). Considering relation (13) and recalling that the left-invariant
affine maps τp′ and τp′−1 = τ−1

p′ have derivative equal to their linear part, we get

that Jac(M1/2
p′ )(p) has the same value as Jac(Γ1/2 ◦Γ−1

1 ) taken at the point p′−1 · p
which is ((2, 0, · · · , 0), 0) = Γ1((2, 0, · · · , 0), 0). This Jacobian determinant was
calculated in the second section (see equations (9) and (10)). In our case as the
ϕ-coordinate of Γ−1

1 (p′−1 · p) is 0, we have to use equation (10) for s = 1/2. The
value of the Jacobian determinant is then 1

22n+3 . It follows that

L2n+1(DM1/2
p′ (p).(B(0, 2r))) =

22n+1

22n+3
L2n+1(B(p, r)) =

1
4
L2n+1(Kr).

Hence by (16) and the remark that follows it, we get that

L2n+1(M1/2(K ′
r,Kr)) ≤

1
4
L2n+1(Kr)(1 + o(r))

when r tends to zero. We now choose a small enough r and the lemma is proved. �
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Remark 3.4. (i) The previous result does not only yields that CD(0, N) does
not hold. This also implies that CD(K, N) does not hold for any K > 0
because this condition is less demanding than CD(0, N). Alternatively,
spaces verifying CD(K, N) with K > 0 are bounded.

(ii) Also for any K < 0, the curvature-dimension bound CD(K, N) does not
hold. We argue by contradiction. Assume that CD(K, N) holds in the
space (Hn, dCC ,L2n+1) for K < 0. Then the “scaled space” property from
[28] tells us that (Hn, λ−1dCC , λ−(2n+2)L2n+1) verifies CD(λ2K, N) for all
λ > 0. But this last space is exactly isomorphic to our metric measure space
via the dilation δλ. Hence CD(K ′, N) would hold in (Hn, dCC ,L2n+1) for
every non-positive K ′. It is proved in [1] that the optimal transport between
two measures is unique, so inequality (6) defining CD(0, N) is obtained as
limit of the corresponding inequalities for CD(K ′, N), which contradicts
Theorem 3.3. It follows that CD(K, N) does not hold in Hn.

(iii) In the same way, we could have proved directly that BM(K, N) is false for
any K ∈ R using the dilations of Hn. It follows that CD(K, N) does not
hold because CD(K, N) implies BM(K, N).

(iv) The property CD(K, +∞) is defined in [27]. With the same argument as
(ii) it implies CD(0,+∞). This property implies the Brunn-Minkowski
inequality (1− s) ln(L(K0)) + s ln(L(K1)) ≤ ln(L(Ms(K0,K1))). It is also
false because of Lemma 3.2.

(iv) For every N , the measure contraction property MCP (K, N) is false for
K > 0. As for CD, the spaces verifying this condition are bounded (see
[28]).

(vi) The property MCP (K, N) also does not hold for N > 2n + 3 and K < 0.
This case is similar to (ii): using dilations we can show that MCP (K, N)
implies MCP (0, N), which contradicts Theorem 2.3.

Remark 3.5. In [22], Monti compares the measure of two compact sets F and F ′

to the measure of F · F ′ = {a · b ∈ Hn | a ∈ F b ∈ F ′}. He proves that

L3(F · F ′)1/4 ≥ L3(F )1/4 + L3(F ′)1/4

does not hold in H1 (4 is the Hausdorff dimension of H1) using an argument based
on the non-optimality of the unit ball in the isoperimetric inequality for H1.

Another proof for Hn of Hausdorff dimension 2n + 2 is the following: Take F to
be the set Kr defined above and denote by F ′ the set {b ∈ Hn | ∃c ∈ F, c·b = 0H} of
inverse elements (it is simply −F because (z, t)−1 = (−z,−t)). Using the methods
of this section we get that F · F ′ is very close to Dτp′(p).(B(0, 2r)). The measure
of this last set is 22n+1L(F ) because, as we said in the first section, Jac(τp′) = 1 in
every point. As L2n+1(F ) = L2n+1(F ′) it follows that for r small enough

L2n+1(F · F ′)
1

2n+2 < L2n+1(F )
1

2n+2 + L2n+1(F ′)
1

2n+2(17)

and the multiplicative Brunn-Minkowski inequality is false for Hausdorff dimension
(i.e. 2n+2). In the paper by Leonardi and Masnou (see [16]), the authors show that
the multiplicative Brunn-Minkowski inequality is true with topological dimension
(i.e. 2n + 1). They explain that there could be in principle an N ∈]2n + 1, 2n + 2[
such that the multiplicative Brunn-Minkowski inequality holds in Hn: in fact if this
equality holds for N , then it holds for N ′ < N . On the other hand, as mentioned
in Remark 3.4, BM(K, N ′) is a consequence of BM(K, N) if N ′ > N .
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We proved in (17) that the sets F and F ′ defined in this remark are a counterex-
ample to the multiplicative Brunn-Minkowski inequality with dimension N = 2n+2.
They are actually also counterexamples for any N > 2n + 1. It follows that 2n + 1
is the largest dimension for which the multiplicative Brunn-Minkowski inequality
is true.

Implication Graph

Let (X, d, µ) be a metric measure space, K a real curvature parameter and N a
dimension parameter greater than 1. The measure µ is assumed to be locally finite
and defined on the Borel σ-algebra of (X, d). We have the following implication
graph

CD(K, N) 3 +3

1,2

��

BM(K, N)

1rz llllllllllll

llllllllllll

Ricc ≥ K

2

2:mmmmmmmmmmmmm

mmmmmmmmmmmmm
MCP (K, N)

2
ks

1′

��
Poincaré+doubling

where the number on the arrow indicates that the implication is subject to certain
conditions. Index 1 indicates that the implication is valid if there exists µ ⊗ µ-
almost surely a unique geodesic from x to y (see Theorem 5.4. in [28] for 1 and [32]
or [18] with Remark 5.3 of [28] for 1′) which is true in Hn (see section 1). Index 2
implications holds if X is a N -dimensional complete Riemannian manifold, d the
geodesic distance and µ the Riemannian volume (see for example Corollary 5.5 and
Theorem 1.7 in [28]). Index 3 means that the implication always holds (see [28,
Proposition 2.1]).
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[32] M.-K. von Renesse. On local Poincaré via transportation. Math. Z., 259(1):21–31, 2008.



GENERALIZED RICCI BOUNDS IN THE HEISENBERG GROUP 21

Institut Fourier BP 74, UMR 5582, Université Grenoble I, 38402 Saint-Martin-d’Hères
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