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Abstract

The Hexachordal Theorem is a fancy combinatorial property of the sets
in Z/12Z discovered and popularized by the musicologist Milton Babbitt
(1916-2011). Its has been given several explanations and partial generaliza-
tions. Here we complete the comprehension of the phenomenon giving both
a geometrical and a probabilistic perspective.

1 An introductive example
For describing a set A, one can adopt a statistical method and look at the mean
distance between two points picked randomly from A. To fix ideas, assume that A
is a subset of the sphere S2 equipped with the chord distance d and the surface mea-
sure µ. By mean distance we meanM1(A) = µ(A)−2

∫∫
A×A d(x, y) dµ(x)dµ(y) the

value corresponding to p = 1 in the range of the power mean distances (Mp(A))p>0

where

Mp(A) :=

(
1

µ(A)2

∫∫
A×A

d(x, y)p dµ(x)dµ(y)

)1/p

. (1)

It is clear that rotating A on S2 does not modify M1(A). To state the obvious the
other power mean distances –as for instance the quadratic mean distance M2(A)–
are also conserved after rotation. Finally the (essential) diameter of A is obviously
conserved – besides the fact it is limp→∞Mp(A) = suppMp(A). Nothing surprising
in all that: the set A is “the same” before and after rotation.

As we will prove in this paper, if µ(A) = µ(S2)/2 another –this time nontrivial–
operation conserves M1(A) and any other power mean Mp(A), namely the com-
plementary map:

A 7→ Ac := S2 \A.

Not only are the power means conserved but also the complete distribution –or law,
a central notion from probability theory we recall later– of the random distance
between two independent points1. To give a concrete and, we think, surprising
example one can consider A to be the set of points with latitude between -30° and
30°, as illustrated in Figure 1. As we just said we have Mp(A) = Mp(A

c) for every
1Since the diameter of S2 is finite, we face the classical Hausdorff moment problem in which

the distribution of the random distance is uniquely characterized by (Mp(A))p∈N. However, we
prove the invariance independently of this argument and for non bounded spaces as well.
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p ≥ 0. But having the same distribution implies other identities: for instance the
probability that the random distance is smaller than

√
2 (the distance between the

poles and the equator) is the same for A and Ac.2

Figure 1: Two points randomly picked in the bright region of the sphere have
distance distributed equally as the one between points picked in the dark region
(made of two caps).

This type of singular invariance phenomenon may have been discovered a couple
of times. We are in particular aware of two special instances in science and arts,
namely in crystallography ([18, 8, 19]) and in music, where it was made famous
by the American composer and music theorist Milton Babbitt under the name
Hexachordal Theorem [5]. More precisely the phenomenon described above for
S2 was proved for the continuous circle S1 (in a generalized version [6, 15, 16])
and the discrete circle Z/12Z in Babbitt’s original version. Cyclic groups are in
fact traditionally used to represent musical structures such as chords, melodies
or rhythms. In particular, a hexachord is a subset of 6 notes over the 12 of
the chromatic scale Z/12Z ≡ {C,C#, D, . . . , C}. Babbitt realized that the same
intervals appear with the same multiplicity in the hexachord Ac as in the hexachord
A.

In this paper we give a full characterization of the spaces that host such a
hexachordal phenomenon, see Theorem 4.2 and Theorem 4.6. However, for a
progressive introduction in the matter, we start in Theorem 1.3 with a sufficient
condition on the space with one implication only, see Theorem 1.3 called common
growth condition (or (CGC) for short) and its application to Babbitt’s case Z/12Z
just after.

1.1 A first glance at the proof for the sphere S2

For the initial example the proof of the invariance is simple enough that we can
already deliver the bulk of its substance now. Let (x1, y1), . . . , (xN , yN ) be a large
sample of pairs of random points from S2. Intuition (backed up by theorems such
as the law of large numbers) tells us that we can estimate Md(A) and Md(A

c)
by collecting pairs (xk, yk) such that xk ∈ A and yk ∈ A on one side and pairs
satisfying (xk, yk) ∈ (Ac)2 on the other side. Note that the expected size of
these subsamples is N/4. We claimed that the distribution of the distance is

2With simple geometric considerations one proves that this probability is 1/2.
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conserved by A 7→ Ac so our two samples {d(xk, yk) : (xk, yk) ∈ A2 } and
{d(xk, yk) : (xk, yk) ∈ (Ac)2 } should have the same statistical aspect.

The deep reason for this observation is only revealed once a third sample is
concatenated to the two others, namely {d(xk, yk) : (xk, yk) ∈ A × Ac}. Doing
this, the first sample becomes the distances d(xk, yk) with xk ∈ A and yk ∈
A ∪ Ac = S2, i.e., no restriction on yk, whereas the second is made of the pairs
(xk, yk) ∈ S2 ×Ac—again one point, here xk, is free. Now it appears that in both
cases we are considering the typical random distance to one given point of the
sphere. The fact that this point, xk (respectively yk) is in A (respectively Ac) has
no incidence on the random distance3. Therefore, the two augmented samples have
the same properties (up to variations due to the sampling) and since we added the
same sample to both, so do the initial samples.

1.2 Statement of the generalized hexachordal theorem
Recall that the distribution of a M-valued random variable Z is the probability
measure on the measured space (M,M) that is denoted by P(Z ∈ ·) and defined
by E ∈ M ⊆ P(M) 7→ P(Z ∈ E) = P({ω ∈ Ω : Z(ω) ∈ E}). It becomes a
conditional distribution P(Z ∈ ·| C) if the probability measure P is biased by an
event C that is assumed to be satisfied. The value P(Z ∈ E| C) is defined by
P(C)−1P({Z ∈ E} ∩ C).

In our introductive example the probability space may be chosen to be Ω =
S2×S2 withX(x, y) = x, Y (x, y) = y for every (x, y) ∈ S2×S2, and the probability
measure µ(S2)−2(µ × µ). The random variable Z is R-valued. It is D = d(x, y).
Finally, the event is C = A×A or Ac ×Ac.

Hereafter, (X, d) is a separable metric space and µ a Borel σ-finite measure
on it. We will refer of such triples (X, d, µ) as metric measure spaces and metric
probability spaces if µ is a probability measure4. As suggested in the introduction
the spaces we have in mind may be continuous spaces as well as discrete spaces.

We now introduce the common growth condition on (X, d, µ) which provides a
sufficient condition for the main result of this paper.

Definition 1.1 (Common growth condition). A metric measure space (X, d, µ) is
said to satisfy the common growth condition if there exists a function ρ on [0,∞)
such that for any center x ∈ X and radius r ∈ [0,∞) the ball B(x, r) = {y ∈ X :
d(x, y) ≤ r} has measure ρ(r). This also writes:

∀x, y ∈ X,∀r ≥ 0, µ(B(x, r)) = µ(B(y, r)). (CGC)

Remark 1.2. If a metric measure space (X, d, µ) satisfies the common growth con-
dition for a function ρ, for every x ∈ X this common growth function equals the
local growth function of center x, i.e ρx : r 7→ µ(B(x, r)). If µ is a finite measure
we can introduce the mean growth function ρ̄ := µ(X)−1

∫
ρx dµ(x) so that the

common growth condition is satisfied if and only if ρx ≡ ρ̄ for every x ∈ X.
3This is a geometric property of S2 that will be catched by the common growth condition.
4Note that to any metric measure space of finite measure, we can associate a metric probability

space (X, d, µ̃) by normalization, i.e µ̃ = µ(X)−1µ.
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We note that S2 and Z/12Z satisfy the common growth condition since no
point is different of the others. Formulated in a more classical mathematical way,
their groups of isometries acts transitively on them. In Section 3 we present other
examples of spaces with the common growth condition that are in the class of
transitive examples as well as outside this class. Doing this we exhibit for the first
time “non-transitive” spaces where the hexachordal property is satisfied.

We can now state our hexachordal theorem for metric probability spaces.

Theorem 1.3 (Hexachordal theorem for metric probability spaces). Let (X, d, µ)
be a metric probability space. Assume that it satisfies the common growth condi-
tion. Then for every Borel set A of µ-measure 1/2, with notation Ac = X \ A it
holds

µ2
{

(x, y) ∈ A2 : d(x, y) ∈ E
}

= µ2
{

(x, y) ∈ (Ac)2 : d(x, y) ∈ E
}
. (Hex)

for every open subset E ⊂ [0,∞), where µ2 is the product measure µ× µ used for
the (measurable) sets of pairs (x, y) ∈ X2.

Let us show how this theorem specializes to Babbitt’s theorem. On the cyclic
group Z/12Z we consider the distance defined by

d(x, y) = min
k∈Z
|x− y + 12k|.

Since this formula corresponds to the minimum number of steps ±1 in Z/12Z
necessary to move from x to y, the distance d is the classical graph distance, the
edges being distributed here exactly between the consecutive numbers of Z/12Z.
The graphs appearing further in the paper are also endowed with their own graph
distance. By choosing for µ the normalized counting measure on Z/12Z, i.e.
µ(A) = #A/12 we obtain the following expression for (Hex) in Theorem 1.3:

1

122
#{(x, y) ∈ A2 : d(x, y) ∈ E} =

1

122
#{(x, y) ∈ (Ac)2 : d(x, y) ∈ E}.

Babbitt’s formulation is slightly different. Denoting by ψA and IA the functions
defined for k ∈ N by

ψA(k) = #
{

(x, y) ⊆ A2 : d(x, y) = k
}

and for k ∈ Z/12Z by

IA(k) = #
{

(x, y) ⊆ A2 : y − x = k
}

respectively counting the number of oriented pairs at distance k ∈ N and of
oriented intervals k ∈ Z/12Z, (Hex) equivalently writes ψA = ψAc . Next, for
every A (and Ac) IA(k) = ψA(k) for k = 0 and k = 6 and, since (x, y) ∈ A2 ⇔
(y, x) ∈ A2, we also have IA(k) = IA(12 − k) = ψA(k)/2 for k = 1, . . . , 5. Thus
IA = IAc holds on the whole Z/12Z. The latter is Babbitt’s formulation of his
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hexachordal theorem. The function IA is classically called the interval content of
A.

Hereafter we distinguish two types of hexachordal theorems: the metric ones
as Theorem 1.3 and the general ones, presented in Section 4.2, where the distance
fonction d is replaced by a general function f on X × X. Examples include sym-
metric and antisymmetric functions, typically f : (x, y) 7→ x−1 · y where (X, ·) is a
group. One recovers for the group Z/12Z the interval content formulation IA = IAc

by Babbitt. Since Babbitt’s original formulation [5] and its first complete proof
by Ralph Hartzler Fox [9], the Hexachordal Theorem has been discussed, reproved
and sometimes generalized by several authors including David Lewin [13], Howard
J. Wilcox [21], Steven K. Blau [7], Daniele Ghisi [10], Emmanuel Amiot [3] and
Brian J. McCartin [11]. Among the metric theorems, one finds a full characteri-
zation of simple graphs exhibiting the Hexachordal property by T. A. Althuis and
F. Göbel [2]. The Hexachordal property has also been studied by David Lewin in
[14] within the framework of Generalized Interval Systems.

A concept related to our topic is the one of homometric sets with a meaning
that may vary between the authors and the domain, see e.g. [17, 19, 1] and the
literature therein. In our language two sets A and B are homometric if for every
E

µ2
(
{(x, y) ∈ A2 : d(x, y) ∈ E}

)
= µ2

(
{(x, y) ∈ B2 : d(x, y) ∈ E}

)
.

The hexachordal theorem simply states that A and Ac of measure 1/2 are homo-
metric.

2 Probabilistic interpretation and proof of Theo-
rem 1.3

Our proof uses a probabilistic writing of (Hex). Let (X,Y ) be a pair of X-valued
independent5 random variables of law µ and D = d(X,Y ). Property (Hex) writes

P(X ∈ A and Y ∈ A and D ∈ E) = P(X ∈ Ac and Y ∈ Ac and D ∈ E). (2)

Adding P(X ∈ A and Y ∈ Ac and D ∈ E) on both sides we see that (Hex) holds
if (and only if) one has

P(X ∈ A and D ∈ E) = P(Y ∈ Ac and D ∈ E) (3)

for every Borel set E ⊆ R. Hence, for Theorem 1.3 it suffices to prove (3).
5We recall to the readers that the independence of X and Y means the equation P(X ∈

S and Y ∈ T ) = µ(S)µ(T ) holds for all measurable sets S and T of X.
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Proof of Theorem 1.3. Let S be a Borel set of X and r ≥ 0. We have:

P(X ∈ S and D ∈ [0, r]) =

∫∫
X×X

1(x ∈ S) · 1(d(x, y) ≤ r)dµ(x)dµ(y)

=

∫
S

(∫
X

1(d(x, y) ≤ r)dµ(y)

)
dµ(x) (4)

=

∫
S

µ(B(x, r))dµ(x)

= µ(S) · ρ(r).

This proves that X and D are independent random variables, X has law µ (this is
not new) and D has cumulative distribution function ρ (see Remark 2.3). There-
fore, on the left-hand side of (3), P(X ∈ A and D ∈ E) = P(X ∈ A) × P(D ∈
E) = (1/2)P(D ∈ E). Exactly in the same way (or noticing that (X,D) and
(Y,D) have the same joint law) we see that Y and D are independent and P(Y ∈
Ac and D ∈ E) = (1/2)P(D ∈ E). This proves (3) and hence completes the
proof.

Remark 2.1. We can express (Hex) in a different way in terms of conditional laws.
Dividing Equation (2) by 1

4 = P((X,Y ) ∈ A2) = P((X,Y ) ∈ (Ac)2)) we obtain

P(D ∈ ·| X ∈ A and Y ∈ A) = P(D ∈ ·| X ∈ Ac and Y ∈ Ac).

This may be read as follows: Provided points X and Y are in A, their distance D
is distributed in the same way as it were provided they were in the complementary
set.

Remark 2.2. Similarly, P(D ∈ ·|X ∈ A) = P(D ∈ ·|Y ∈ Ac) is a version of (3)
formulated with conditional laws. The following one-line computation

P (D ≤ r|X ∈ A) = µ(A)−1
∫
A

P(d(x, Y ) ≤ r)︸ ︷︷ ︸
=ρx(r)=ρ(x)

dµ(x) = ρ(r),

with its counterpart P (D ≤ r|Y ∈ Ac) = ρ(r) (for every r ≥ 0), constitute an
alternative, shorter and more probabilistic proof of Theorem 1.3.

Remark 2.3. Taking S = X in (4) for a general X we obtain P(D ≤ r) = ρ̄(r)
so that ρ̄ (introduced in Remark 1.2 for general metric measure spaces) is the
cumulative distribution function of D. The cumulative distribution functions of
d(x, Y ) and d(X, y) are simply ρx and ρy. Moreover, under the common growth
condition all these functions equal ρ.

Remark 2.4. The random variables X, Y and D are pairwise independent but
they are not independent. In particular, for very localized sets S and T , say balls
of (small) radius ε, the law P(D ∈ ·|X ∈ S and Y ∈ T ) is a measure concentrated
on an interval of length 2ε, hence different from P(D ∈ ·).
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3 Metric probability spaces satisfying the common
growth condition

We give examples of spaces where Theorem 1.3 applies.

3.1 Transitive examples
A classical group-theoretical framework which ensures (CGC) is the one of tran-
sitive group actions. We assume that for every x and y in X there exists a map
f : X→ X that satisfies

• f(x) = y,

• d(f(z), f(z′)) = d(z, z′) for every z, z′ ∈ X, so that f is an isometry,

• f#µ = µ, where f#µ := µ(f−1(·)) is the law of f(X) if X has law µ.

The common growth condition follows:

ρx(r) = µ(B(x, r)) = µ(f−1B(f(x), r)) = µ(B(f(x), r)) = ρy(r).

Let us first focus on the class of transitive examples satisfying (CGC) in the discrete
setting of finite graphs with their counting measure. Note that in this case the
condition f#µ = µ is automatically satisfied because f is one-to-one. Graphs
satisfying the two first conditions are usually called (vertex-)transitive graphs and
f a graph isomorphism. Many of these graphs are the Cayley graph of a finite
group. Recall that if a group X is generated by a finite system of generators Σ ⊆ X,
the Cayley graph attached to (X,Σ) is the graph with vertices X and edges the
pairs (x, y) such that x−1y ∈ Σ or y−1x ∈ Σ. As usual we denote this adjacency
relation by x ∼ y. Let us check that these spaces X with the counting measure and
the path distance are of transitive type and hence satisfies the common growth
condition. Given x and y we choose for f the translation defined by τv : z 7→ vz
where v = yx−1, so that f(x) = y. It is an isometry because τv(z) ∼ τv(z′) if and
only if z ∼ z′, which follows from τv(z)

−1(τv(z
′)) = z−1z′. Finally recall that it

preserves the counting measure since it is one-to-one. Basic examples of this type
(i.e finite Cayley graphs) are:

• The symmetric group S(n) with, for instance, for Σ the set of transpositions.

• The group (Z/n1Z)× · · ·× (Z/nkZ) with Σ = {(0, . . . 0,±1, 0, . . . , 0)}. Note
that for n1 = · · · = nk = 2 we find the so-called hypercube {0, 1}k. For
k = 1 and n1 = 12 we recover the chromatic scale Z/12Z.

Note that a vertex-transitive graph may not be the Cayley graph attached to
some (X,Σ), a counterexample being the Petersen graph (a famous graph with 10
vertices and 15 edges) another one the graphs made of the edges and vertices of
the dodecahedron, icosahedron and the truncated icosahedron

We list now some continuous transitive examples among the most basic:
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• The (hyper)torus Td = S1 × · · · × S1 of dimension d with its normalized
volume (among other tori).

• Any sphere Sd (see Remark 3.1) or product of spheres with their normalized
volumes.

• The Klein bottle. When the Euclidean space R2 is made a quotient through
the group spanned by the translation (x, y) 7→ (x + 1, y) and the glide re-
flexion (x, y) 7→ (1 − x, y + 1)6 the translations of R2 remains isometries
that are acting transitively. Topologically the quotient space a Klein bottle
with fundamental domain the square [0, 1)× [0, 1) (the lower and and upper
sides are identified after inversion of the orientation). Any Klein bottle of
volume 1 obtained in a similar way will be transitive, satisfy the common
growth condition and hence host the hexachordal property. Note that two
such Klein bottles are generally not isometric.

• For more exotic examples we can think to Albanese tori. Their topology is
different from the one of usual tori.

Remark 3.1. Based on their algebraic structures (of sets of complex numbers,
quaternions or octonions of modulus 1, respectively) the spheres S1, S3 and S7

were already considered in [15, §7] for algebraic generalizations of the Hexachordal
Theorem (in the spirit of Examples 4.7 and 3.6), the case of spheres of other
dimension remaining open. For general spheres a proof similar to ours is briefly
suggested in the Open Problems of [6] after it is completed for S1. However, it
does not seem directly implementable on the Patterson functions (see Remark 4.15
for this notion).

Remark 3.2. The Hexachordal Theorem has been largely studied in the so-called
Transformational Music Theory of Lewin (see [14]) in particular in the context
of (transformation) groups T acting on a musical space S in a simply transitive
way. The uniquely determined group element mapping x to y is called interval
and denoted by Int(x, y). By choosing e ∈ S as a reference we can identify T with
S through x ∈ S 7→ Int(e, x) ∈ T . In this way the group action of Int(x, y) is
identified with the left product by z 7→ (yx−1)z. The triplet (S, T, Int) was called
generalized interval system or GIS by David Lewin. This is the language for the
proof of the hexachordal theorem for locally compact groups obtained in [15, 16].

3.2 Non transitive examples
The metric measure spaces of this subsection are particularly interesting since they
are of different nature from the previous ones. These are graphs that satisfy (CGC)
- and hence (Hex) - but are not transitive (we call them non transitive). Example
3.4 is with seven vertices the smallest possible non transitive simple graph. During
the writing of the present paper we realized that a collection of similar graphs
(notably three graphs with twelve vertices) were already exhibited by Althuis

6The elements of this group are the isometries of the form (x, y) 7→ (k ± x, y + l) where ± is
+ if and only if l is even.
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and Göbel in [2]. The phenomenon of non transitive spaces satisfying (CGC) is
not limited to graphs: other examples can be obtained by taking the product of
such graphs with e.g. S1, see Examples 3.6. Example 3.9 shows an alternative
construction preserving (CGC). The question whether non transitive spaces with
(CGC) can be found among Riemannian manifolds appears very interesting to us.
Next subsection gives a negative answer in the case of surfaces.

Example 3.3. Consider the finite 3-regular graph depicted on Figure 2. One can
easily convince that it satisfies the common growth condition: the balls of radius
0 have cardinal 1, the balls of radius 1 cardinal 4 and all the greater balls are
the whole space whose cardinal is 8. However, it clear that a and h are points
of different types: the neighbors of h are disconnected whereas the neighbors b
and c of a satisfy b ∼ c. Consequently the group of isomorphisms does not act
transitively.

For the sake of completeness we provide the distribution of d(X,Y ) for the
part A = {a, b, c, d}. The reader can check that it is the same as the one attached
to Ac.

r 0 1 2
P(D = r|(X,Y ) ∈ A2) 4/16 8/16 4/16

a

b

c

d
e

f

g

h

Figure 2: Two points randomly picked in the dark region of the graph have distance
equally distributed as the one between points picked in the bright region.

Example 3.4. The graph of Figure 3 also satisfies the common growth condition
(ρ(0) = 1, ρ(1) = 5, ρ(2) = 7). With cardinal seven it has the minimal cardinal
for a graph satisfying (CGC) without transitive action of group of isomorphisms.
However, since seven is an odd number the hexachordal property is –contrary to
Example 3.3– a trivial statement: subsets A and Ac of cardinal 7/2 do not exist.
Hence Theorem 1.3 is a correct but empty statement.

Theorem 4.2 in the next section will give a new turn to this poor conclusion.
Let us already give an idea of it: if we split point a in two parts and join it for half to
A0 = {b, b, c, c, d, d} and for half to A1 = {e, e, f, f, g, g}, two independent random
points in A0 (augmented with the half point) will have distance D0 distributed in
the same way as the random distance D1 between two points in the complement.
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The reader can check that both times it is the distribution given in the following
tabular.

r 0 1 2
P(Di = r) 13/49 32/49 4/49

a

b

c

de

f

g

Figure 3: Two points randomly picked in the dark region of the graph have distance
distributed equally as the one between points picked in the bright region. Vertex
a is for half bright and for half dark.

Remark 3.5. The graph of a star drawn in a heptagon compared with Example
3.4 provides the evidence that two different (non isomorphic) spaces can satisfy
the common growth condition with exactly the same common growth function7.
Another famous example8 has been exhibited by Kowalski and Preiss in [12]: the
Euclidean space R3 ⊆ R4 and the cone C = {x ∈ R4 : x24 = x21+x22+x23} with, for
both spaces, the (Euclidean induced byR4) chord distance and the induced volume
(of dimension 3) satisfy (CGC) with the same common growth function. Notice
that R3 is transitive and (C, d, µ) is not: It possesses for instance a singularity at
0. A uniqueness result for C among subsets of Euclidean spaces is established in
[12].

3.3 The case of Riemannian manifolds of dimension 2
We started the paper with a surface, namely the sphere S2 that satisfies the com-
mon growth condition with the chord distance and its surface measure (normalized
to become a probability measure). Notice now that the geodesic distance (for which
the distance between two points is the length of the shortest path drawn on the
surface) can be expressed as an increasing function of the chord distance, hence
the common growth condition also holds for the geodesic distance. In the following
we enlarge the exploration and look at all the surfaces with their geodesic distance
that we classify with respect to the common growth condition. Precisely we con-
sider the Riemannian manifolds X of dimension 2 that we moreover assume to

7As a corollary these spaces are homometric.
8but unfortunately for measures of infinite mass
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be connected, complete and separable. We consider them with their geodesic dis-
tance d and the corresponding Riemannian volume µ. Since we work with metric
probability spaces we incidentally assume µ(X) = 1.

Assume now that the surface X satisfies the common growth condition. The
first consequence of it is that the (sectional) curvature is constant. Namely it is
well established that at any point x ∈ X,

µ(B(x, r)) =r→0+ πr2(1− κ(x)r/24) + o(r3)

where κ(x) is the curvature at x. It follows that κ can be expressed independently
of x since it is κ(x) = limr→0 24(πr2−ρ(r))/r. Therefore we enter the well-known
class of surfaces of constant curvature. Up to multiplying the distance by a positive
constant, such a Riemannian manifold is known to have for universal cover one of
the three simply connected “space forms”: the Euclidean space (of curvature zero),
the hyperbolic plane (curvature -1) and the sphere (curvature 1). Therefore, up to
a scaling that makes it satisfy µ(X) = 1, our Riemannian manifold X is a quotient
of one of these three spaces. In particular X is locally isometric to one of these
spaces so that ρx(r) = ρx′(r) for any x, x′ ∈ X and r close enough to zero.

• For curvature zero we obtain the 2-tori and the Klein bottles. The former
are obtained as the quotient of R2 through Zu+Zv where |det(u, v)| is equal
to 1, since it is the volume of a fundamental domain, i.e. the parallelogram
{αu + βv ∈ R2 : α, β ∈ [0, 1[}. Note that two 2-tori are generally not
isometric to each other. The same discussion is valid for Klein bottles (recall
also p. 8).

• For the positive curvature we obtain only two examples: the sphere9 of radius
1/
√

4π and the projective two plane RP2 obtained from the sphere of radius
1/
√

2π when the opposite points are identified.

• For the negative curvature we dive in the rich world of hyperbolic surfaces
where we show that no surface satisfies the common growth condition. As
for the other space forms mentioned above, any two points x, x′ ∈ X possess
isometric neighborhoods and ρx(r) = ρx′(r) for r small enough. However
when the radii of B(x, r) and B(x′, r) increase, some balls will overlap them-
selves earlier than others. This happens at the so-called cut locus. Recall
that hyperbolic surfaces of volume one may be compact or not. Briefly, in
the compact case we take x on the so-called systol and x′ not on it. For non-
compact hyperbolic surfaces of volume one we see that outside large balls
(of radius R and center x0) there are still balls of radius 1 but their volume
uniformly tends to zero as R goes to infinity. Therefore, the common growth
condition can not be satisfied.

9Up to the scaling we recover our introductive example S2 (for which µ was the Riemannian
volume divided by 4π).
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3.4 Constructions with metric spaces satisfying the com-
mon growth condition

Example 3.6 (Products). Let (X1, d1, µ1) and (X2, d2, µ2) be two spaces satisfying
(CGC) for ρ1 and ρ2, respectively. Then the product space X := X1 × X2 also
satisfies it, with the product measure µ := µ1 × µ2. Several choices are possible
to combine the distances. We focus on the `p norms of (d1, d2) ∈ R2, where
p ∈ [1,∞]:

`∞ We can set d((x1, y1), (x2, y2)) = max(d1(x1, y1), d2(x2, y2)). Let us com-
ment on the example of the product of two finite graphs with their path dis-
tances. The resulting space is X1×X2 with the path distance resulting of the
so-called strong product of the two graphs. In fact d((x1, y1), (x2, y2)) ≤ 1
if and only if d((x1, y1) ≤ 1 or d((x2, y2) ≤ 1. Denoting by (x1, y1) '
(x2, y2) the relation {(x1, y1) ∼ (x2, y2) or (x1, y1) = (x2, y2)}, it follows
that (x1, y1) ' (x2, y2) if and only if x1 ' x2 and y1 ' y2. One can check
that (CGC) is satisfied for ρ = ρ1 × ρ2.

`p We can set dp((x1, y1), (x2, y2)) = d1(x1, y1)p + d2(x2, y2)p and obtain for
this choice the common growth function ρ(r) =

∫
[0,r]

ρ2((rp − tp)1/p)dρ1(t).

`1 The product of two graphs is the so-called Cartesian product for which
(x1, y1) ∼ (x2, y2) if and only if (x1 = x2 and y1 ∼ y2) or (y1 = y2 and
x1 ∼ x2).

`2 If X1 and X2 are isometrically embedded in Euclidean spaces, so is the prod-
uct with the `2 distance. For instance the hexachordal phenomenon can be
observed on S1 × {0, 1} ⊆ R2 ×R = R3.

Example 3.7 (Union of two spaces with the same common growth function). We
consider for i = 1, 2 two spaces (X, di, µi) satisfying the common growth condition
for the same function ρ. We assume moreover that the two spaces are bounded.
As noticed in Remark 3.5 they can be different. Define by X the disjoint union
X1 t X2 with probability measure µ = (1/2)(µ1 + µ2) and distance defined by

d(x, y) =

{
di(x, y) if x, y ∈ Xi for some i,
L otherwise.

The common growth condition and (Hex) are satisfied for any L ≥ 0 but in order
to save the triangle inequality we have to require that for every i = 1, 2 the distance
between any two points of Xi is less than 2L, i.e L ≥ max(Diam(X1),Diam(X2))/2.
Theorem 4.6 treats of the symmetric functions f (or d) that may not be symmetric.
Example 3.8 (Graphs whose points are replaces by metric spaces). Let (G, d0)
be a finite graph with the common growth condition for the counting measure.
We scale it so that adjacent points have distance L. We replace G = ∪Ni=1{x1} by
X = tNi=1Xi a family of metric spaces (Xi, di, µi) with diameter smaller than 2L and
satisfying (CGC) with moreover the same common growth function, ρ1 = · · · = ρN .
On X we set d(x, y) = di(x, y) if x, y ∈ Xi and d(x, y) = d0(xi, xj) if x ∈ Xi,
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y ∈ Xj , i 6= j. It can be checked that the resulting space satisfies the common
growth condition. A special case is Example 3.7.
Example 3.9. We have indicated examples of metric probability spaces (X, d, µ)
satisfying (CGC) such that D is an absolutely continuous or a discrete random
variable. With {0, 1} × S1 in Example 3.6 and the Examples 3.7 and 3.8 we see
the possibility for D to have both a non trivial atomic and absolutely continuous
part. We introduce now the situation of a space with the (CGC) such that D is
diffuse but not absolutely continuous. Precisely its law is the Cantor law and its
cumulative distribution function ρ is the Devil’s staircase.

For X we take the sequences a = (a1, a2, . . .) with ai ∈ {0, 1} for every i ≥ 1.
The measure is the one of head/tail model, i.e we weight each digit with 1/2
independently. For the the distance between a and b we set d(a, b) =

∑∞
i=1 |bi −

ai|(2/3i). Note that it corresponds to a `1 distance on an infinite product {0, 1}N∗

weighted by a scaling factor (2/3i) on the i-th coordinate.
For an interesting application of Theorem 1.3 one can consider for A the set of

sequences such that 0 follows the first 1 in the sequence. A simple exercise is to
prove µ(A) = µ(Ac) = 1/2. A more challenging one is to prove that A and Ac are
not isometric –even though they are homometric according to (Hex).

4 Full characterization of the spaces satisfying the
hexachordal property

In this last section we show that (CGC) is not far from being a necessary and
sufficient condition for the hexagonal property (Hex). To obtain this equivalence
we i) observe that sets of measure zero have no incidence in the hexachordal prop-
erty and introduce for this (CGC’), ii) carefully avoid the logical trap explained in
Example 3.4 by introducing (Hex’). This being done we obtain Theorem 4.2. In
Theorem 4.6 we give a second generalization that connects our work with previous
group theoretic [21, 15] or abstract [9] interpretations of the hexachordal theorem.

4.1 Full characterization for metric probability spaces
For our full characterizations of Theorems 4.2 and 4.6 we introduce the concept
of balanced decomposition. It is an appropriate answer to the problem described
in Example 3.4. Similar concepts are to be found in the literature in the weights
of [6] and the bounded functions of [15].

Definition 4.1. Let (X,F, µ) be a probability space. We call balanced decompo-
sition of µ any pair (µ0, µ1) of probability measures such that 2µ = µ0 +µ1. Note
that µ0 and µ1 can be identified with functions of density smaller than or equal
to 2.

We can now state our full characterization of spaces that satisfy (Hex’), i.e.
(Hex) generalized as suggested in Example 3.4.

Theorem 4.2 (Characterization for metric probability spaces). Let (X, d, µ) be a
metric probability space. The following properties are equivalent:
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(CGC’) There exists a set X′ ⊆ X of full measure for µ such that the common growth
condition is satisfied on (X′, d, µ).

(Ind) For any independent random variables X and Y of law µ and D = d(X,Y ),
the random variables X, Y and D are pairwise independent.

(Hex’) For every balanced decomposition (µ0, µ1) of µ and two random triples (Xi, Yi, Di)i=0,1

where for every i, (Xi, Yi) is a pair of independent random variables of law
µi and Di = d(Xi, Yi), we have the equality on distributions

P(D0 ∈ ·) = P(D1 ∈ ·).

Remark 4.3. We recover Theorem 1.3 as follows: the common growth condition
implies (CGC’) (take X′ = X for example). Hence (Hex’) is satisfied for any
balanced decomposition, in particular for (µA, µAc) where A has measure 1/2 and
µA is defined by µA = µ(A)−1µ(A ∩ ·). This directly corresponds to (Hex) in
Theorem 1.3, up to a factor 4.
Remark 4.4. If X and Y are independent of law µ, since d is symmetric we have
equality of laws (X,D) = (X, d(X,Y )) ∼ (Y, d(Y,X)) = (Y,D). Therefore, to
satisfy (Ind) it suffices that X and D are independent.
Remark 4.5. Following Remark 1.2 we see that (CGC’) is satisfied if and only if
ρx = ρ̄ for almost every x ∈ X where we recall from Remark 2.3 that ρ̄ =

∫
ρx dµ(x)

is the cumulative distribution function of D.

Proof of Theorem 4.2. The beginning of the proof of Theorem 1.3 is the implica-
tion (CGC)⇒(Ind). The reader can check that it also readily constitutes a proof
of (CGC’)⇒(Ind) too. We use that x 7→ µ(B(x, r)) is equal to ρ̄(r) in all points x
apart from a set of empty measure. Let us now prove (Ind)⇒(CGC’). For every
r ≥ 0 we set S−r = {x ∈ X| ρx(r) < ρ̄(r)} and S+

r = {x ∈ X| ρx(r) > ρ̄(r)}. Recall
that ρ̄ is the cumulative distribution function of D and ρx the one of d(x, Y ).
Suppose by contradiction that µ(S−r ) > 0. Thus

P(X ∈ S−r and D ∈ [0, r]) =

∫∫
1(x ∈ S−r ) · 1(d(x, y) ≤ r)dµ(x)dµ(y)

=

∫
S−r

(∫
1(d(x, y) ≤ r)dµ(y)

)
dµ(x) =

∫
S−r

µ(B(x, r))dµ(x) < µ(S−r ) · ρ̄(r),

which shows that X and D are not independent, a contradiction. Therefore
µ(S−r ) = 0 and similarly µ(S+

r ) = 0. We deduce that
⋃
r≥0, r∈Q(S−r ∪ S+

r ) has
µ-measure zero. If we denote X′ the complementary set we obtain ρ̄(r) = ρx(r)
for every x ∈ X′ and r ∈ Q. This extends to every r ∈ R+ because cumulative
distribution functions are right-continuous. Hence (CGC’) is satisfied.

We have proved (CGC’)⇔(Ind) and will be ready after we prove (Ind)⇔(Hex’).
We postpone this proof to Theorem 4.6 because considering that d is symmetric
and measurable on X×X this theorem states a result that includes (Ind)⇔(Hex’).
Its proof is also independent from Theorem 4.2. Notice that d is measurable
because (according to our definition of metric probability spaces) X is separable
so that the product σ-algebra on X2 is induced by the product topology. Hence
continuous functions as d are measurable.
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4.2 Full characterization for general spaces and groups
As suggested in Example 3.7 it is possible to replace d by a real symmetric function
f . The reader can check that (CGC’), can appropriately be adapted from Remark
4.5 to provide a necessary and sufficient condition for (Hex’). The sets B(x, r) =
{y ∈ X| f(x, y) ≤ r} are no longer balls but the functions ρx and ρ̄ of Example 1.2
still make sense. They also continue to be the cumulative distribution functions
of f(x, Y ) and F = f(X,Y ).

In this section we show that f does not need to be real valued and that it even
may not be symmetric. This point of view is considered since Babbitt’s original
theorem and further in Lewin’s formalism (recall Remark 3.2). Typically f is an
antisymmetric function as in Example 4.9 where it may be seen as an interval
function.

Theorem 4.6 (Characterization for abstract probability spaces). Let (X,F , µ) be
a probability space and f a measurable symmetric function into a measured space
(M,M). The following properties are equivalent:

(Ind) For any independent random variables X and Y of law µ and F = f(X,Y ),
the random variables X, Y and F are pairwise independent10.

(Hex’) For every balanced decomposition (µ0, µ1), considering the triples (X0, Y0, F0)
and (X1, Y1, F1), where for i = 0, 1 the pair (Xi, Yi) is made of independent
random variables of law µi and Fi = f(Xi, Yi), we have equality of both
distributions, P(F0 ∈ ·) = P(F1 ∈ ·) as measures onM.

(Hex”) For any balanced decompositions (µ0, µ1) and (ν0, ν1) where for i = 0, 1,
Xi has law µi, Yi has law νi and Fi = f(Xi, Yi), we have equality of both
distributions P(F0 ∈ ·) = P(F1 ∈ ·).

Moreover if f is no longer supposed to be symmetric (Ind)⇔(Hex”) still holds as
well as (Hex”)⇒(Hex’).

Proof. To complete the proof of Theorem 4.2 we first establish in part 1. and 2. of
this proof the two implications of (Ind)⇔(Hex’) in the case where f is symmetric.
For the remainder, notice already that (Hex”)⇒(Hex’) is obvious since (Hex”)
corresponds to a generalization of (Hex’) where the constraint µi = νi is relaxed.
In part 3. we will finish with the equivalence (Ind)⇔(Hex”) by briefly adapting the
scheme drawn up in 1. and 2.

1. (Ind)⇒(Hex’). Let us fix some measurable E ⊆M and (µ0, µ1) a balanced
decomposition of µ. We first prove

P(f(x, Y ) ∈ E) = P(F ∈ E) (5)

for µ-a.e. x ∈ X. This follows from the fact that these two functions have the same
10As explained in Remark 4.4, when f is symmetric (Ind) is satisfied if and only if X and F

are independent.
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integral on the measurable sets S in X. We have indeed

∫
S

P(f(x, Y ) ∈ E)dµ(x) = P(X ∈ S, f(X,Y )︸ ︷︷ ︸
F

∈ E)

∫
S

P(F ∈ E)dµ(x) = P(X ∈ S) ·P(F ∈ E)

Equality follows from (Ind). Integrating (5) with respect to µ0 (that is absolutely
continuous with respect to µ) we obtain BE(µ0, µ) = BE(µ, µ) where BE is the
bilinear function defined by BE : (α, β) 7→

∫∫
1(f(x, y) ∈ E)dα(x)dβ(y). Note

now that f(x, Y ) = f(Y, x) and that these random variables have also the same
law as f(X,x). Therefore P(f(X, y) ∈ E) = P(F ∈ E) for µ-a.e. y ∈ X. Similarly
as before we deduce BE(µ, µ) = BE(µ, µ1). Finally, subtracting BE(µ0, µ1) on
each extreme side of BE(µ0, 2µ) = 2BE(µ, µ) = BE(2µ, µ1) we get

BE(µ0, µ0) = BE(µ1, µ1) for every measurable E ⊆M. (6)

Translated with random variables it is exactly (Hex’).
2. (Hex’)⇒(Ind). For this implication, it is sufficient to prove

P(X ∈ S and F ∈ E) = P(X ∈ S) ·P(F ∈ E)

for every measurable E ⊆M and S ⊆ X with µ(S) ≥ 1/2. For sets S of probability
less than 1/2 the independence relation is obtained through the complementary
set X \ S. We fix S and E. Let µ0 be µ(S)−1µ(· ∩ S) such that (µ0, 2µ− µ0) is a
balanced decomposition of µ. Starting back from (6), adding BE(µ0, µ1) we obtain
back BE(µ0, µ) = BE(µ, µ1) = BE(µ1, µ) = BE(µ, µ) where we use the symmetry
of f in the second equality and the bilinearity in the third one. In probabilistic
terms we have obtained

µ(S)−1P(X ∈ S and F ∈ E) = P(F ∈ E),

which is exactly the wanted equation, since µ(S) = P(X ∈ S).
3. We follow part 1. and obtain that x 7→ P(f(x, Y ) ∈ E) and y 7→ P(f(X, y) ∈

E) are almost surely constant of value P(F ∈ E) on (X, µ). It follows

BE(µ0, ν0 + ν1) = 2BE(µ0, µ) = 2BE(µ, ν1) = BE(µ0 + µ1, ν1)

for every balanced decompositions (µ0, µ1) and (ν0, ν1). Subtracting B(µ0, ν1)
we obtain BE(µ0, ν0) = BE(µ1, ν1) which proves the first implication. For the
second one, from BE(µ0, ν0) = BE(µ1, ν1) we obtain back BE(µ0, ν) = BE(µ, ν1)
for every µ0 ≤ 2µ and ν1 ≤ 2µ (these inequalities correspond to the conditions
that (µ0, 2µ−µ0) and (2µ− ν1, ν1) are balanced decompositions). Choosing µ0 =
µ(S)−1µ(· ∩ S) and ν1 = µ we can reconnect with the proof in 2.

Example 4.7. Let (X, ·) be a separable topological group (all operations are con-
tinuous) with a uniquely determined left(-translation)- and right(-translation)-
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invariant probability measure µ (a Haar measure)11. This includes the locally
compact Hausdorff topological groups of [15]. For f we first consider the product.
For every x ∈ X the law of f(x, Y ) is µ so that X and F = X · Y are indepen-
dent. In the same way Y and F are independent (even though X is not abelian)
so that Theorem 4.6 applies. For an application of (Hex) one can consider the
symmetric group S(n) with its renormalized counting measure and the alternat-
ing group A(n) for A. The random product of two independently chosen even
permutations is distributed in the same way as for odd permutations. The two are
in fact uniformly distributed on A(n).

Example 4.8. In the same setting as Example 4.7 one can take the operation
f(x, y) = x−1 · y (the Haar measure is conserved by x 7→ x−1). This function was
often seen as an interval function in the literature of the hexachordal theorem.

Example 4.9. Let (X,F , µ) be a probability space and f a measurable function
defined on X × X with values in a measurable space (M,M). We assume that f
is antisymmetric in the sense there exists a measurable involution i on M (i.e a
function i : M → M such that i ◦ i(m) = m, for every m ∈ M) with f(x, y) =
i ◦ f(y, x). Then (Ind) is satisfied by X, Y and F = f(X,Y ) as soon as X and F
are independent. To see this we consider P(Y ∈ S and F ∈ E). It equals

P(Y ∈ S and f(Y,X) ∈ i(E)) = P(X ∈ S and f(X,Y ) ∈ i(E))

= P(X ∈ S and F ∈ i(E))

= P(X ∈ S) ·P(f(X,Y ) ∈ i(E))

= P(Y ∈ S) ·P(F ∈ E).

This show again that we have (Ind) in Example 4.8 without using the argument
that X−1 has law µ.

Remark 4.10. For symmetric functions f the implication (Ind)⇒(Hex”) holds even
without assuming that Y and F are independent. However for general functions
it is not sufficient to assume that F = f(X,Y ) is independent from X. Let us
illustrate this with f(x, y) = y. Under µ0 for X0 and Y0 independent the law of
F0 is actually µ0. Under µ1 the law of F1 = is µ1 6= µ0. Therefore, (Hex’) and
(Hex”) are false.

Example 4.11. Let us show that in Theorem 4.6 the implication (Hex’)⇒(Ind) is
false. To see this let X be the space {?,#, §, •} of cardinal 4 and the values of a
non symmetric function f be given in the following table where X is the uniform
choice of a row, Y of a column and F is the intersection. Our example is the right
table of Figure 4, the left and the middle being part of the explanation. Observe
that the law of F = f(X,Y ) conditioned on the choice of a row (the value of X)
is not constant. Hence (Ind) is not satisfied. Observe now that (Ind) is satisfied
for Cayley tables, i.e tables for a group structure (see e.g. [9, 21] where this fact

11Note that it is in fact enough that there exists a left-invariant measure µ. If X and Y are
independent of law µ and µ′, respectively where µ′ is right-invariant (as for instance µ−1 : E 7→
µ(E−1)), one can check that Y · X : Ω → X is measurable, is both left- and right-invariant
and has law µ and µ′. Therefore, µ = µ′ so that there exists a unique Haar measure and it is
bi-invariant.

17



? # § •
? 0 1 2 3
# 1 2 3 0
§ 2 3 0 1
• 3 0 1 2

? # § •
? 0 1 2 3
# 1 2 3 0
§ 3 0 1 2
• 2 3 0 1

? # § •
? 0 1 3 3
# 1 2 3 0
§ 2 0 1 2
• 2 3 0 1

.

Figure 4: The left and middle functions satisfy (Hex’) and (Hex”). The right one
satisfies (Hex’) but not (Hex”).

is commented) as for instance Z/4Z. Therefore, the left table satisfies (Hex”).
On the middle table below we have swapped the two last rows. We can notice
that the function is not longer symmetric. However, we stress that (Ind), (Hex”)
and (Hex’) remain. In (Hex’), given a balanced decomposition (µ0, µ1) we have
for P((Xi, Yi) = (a, b)) = P((Xi, Yi) = (b, a)) for any pair (a, b) and i = 0, 1.
Therefore, we conserve (Hex’) if we swap the values of f(a, b) and f(b, a). This
is what we did for (§, ?) between the middle and the right table. As commented
above (Ind) (and (Hex”)) are no longer true after this operation.

Example 4.12. We consider G = Z/3Z × Z/4Z with f : (x, y) 7→ x−1y. For
A = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (1, 3)} and its complementary set the random
variables Fi are distributed as follows:

v (0, 0) (0,2) (0, 1) and (0, 3) (1, 0) and (2, 0)
P(Fi = v) 6/36 4/36 4/36 2/36

v (1, 1) and (2, 3) (1, 2) and (2, 2) (1, 3) and (2, 1)
P(Fi = v) 3/36 2/36 2/36

For the set of generators {(±1, 0), (0,±1)} this corresponds to the following dis-
tribution of the distance:

r 0 1 2 3
P(Di = r) 6/36 12/36 10/36 8/36 .

One can check that for A′ = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 3)} and its com-
plementary set the same distribution of the distance is obtained as for A. However,
the distribution of Fi is different and permits to distinguish A from A′. In partic-
ular P(Fi = (0, 2)) becomes 6/36 6= 4/36.

Example 4.13. In Example 4.9 the inverse implication is not satisfied. The follow-
ing function on {?,#, §, •} is antisymmetric (with involution i(m) = 4−m). Let
us first check that it satisfies (Hex’). We have P((Xi, Yi) = (a, b)) = P((Xi, Yi) =
(b, a)) so that P(Fi = m) = P(Fi = i(m)) for every m. Thus we can see f as a
symmetric function with random value f̃(X,Y ) = {f(X,Y ), f(X,Y )} composed
with the random choice between the two elements (if they are different). However
(Ind) fails. For instance P(F = 3| X = ?) = 1/4 6= 0 = P(F = 3| X = #). This
illustrates that the implication (Ind)⇒(Hex’) in Example 4.9 is not an equivalence.
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? # § •
? 0 1 2 3
# -3 0 1 2
§ -2 -3 0 1
• -1 -2 -3 0

Example 4.14. To take Cayley table of a group is only one way to have X, Y and F
pairwise independent. In the discrete setting it was already mentioned for instance
in [9] that any latin square gives rise to the hexachordal theorem. Here is such a
square with six symbols. ‘Latin’ stands here for the fact that each symbol appears
once and only one on each row and column. An rather simple argument in the
theory of latin squares/quasigroups tells that if the following table were a Cayley
table it would also be the Cayley table of a group where the neutral element would
be both left and up in the upper and left header, respectlively. Here it means that
♥ could be considered as the neutral and the elements on the first row and column
are the ones of the two headers. Notice that they appear in the same order such
that the elements on the diagonal should be their square. Since on the diagonal
♥ only appears once, the group can neither be Z/6Z, (Z/2Z × Z/3Z) nor S(3)
where there are at least two elements of order 2.

♥ � 4 ♣ ♦ ♠
� 4 ♦ ♠ ♥ ♣
4 ♣ � ♦ ♠ ♥
♣ ♠ ♥ � 4 ♦
♦ ♥ ♠ 4 ♣ �
♠ ♦ ♣ ♥ � 4

Also for continuous examples one does not need a group structure. It was
already observed in [15] that the group of octonions of modulus 1, identified with
S7 host a hexachordal theorem even though the associativity axiom fails on S7.
Remark 4.15 (Patterson function). Some papers are considering the setting of
separable groups with a bi-invariant Haar probability measure µ (the normal-
ized counting measure for a finite group or, more generally, the one presented in
Examples 4.7 and 4.8) and introduce the Patterson function of A ⊂ X defined
by PatA : g ∈ X 7→ µ(A ∩ g · A). They also reformulate Babbitt’s theorem as
PatA = PatAc for every A of measure 1/2. Let us explain that this is an equality
of densities (with respect to µ) that corresponds to our equality of measures (Hex).
Note first that our formulation with measures is justified by the fact that in general
F = f(X,Y ) does not possess a density with respect to µ. Let (X,Y, F ) be as in
Examples 4.8 with F = X−1Y . The three components are pairwise independent of
law µ. Similar to Remark 2.1 we have the following rewriting of (Hex) for groups

P(F ∈ E| X ∈ A and Y ∈ A) = P(F ∈ E| X ∈ Ac and Y ∈ Ac). (7)

The left-hand side also writes 4P(F ∈ E and X ∈ A and X ·F ∈ A). Since F and
X are independent this is

4

∫
E

P(X ∈ A and X · g ∈ A) dµ(g) =

∫
E

4PatA(g−1)dµ(g)
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Using the left invariance of µ in the definition of PatA we finally see that the law
of F conditional upon (X ∈ A and Y ∈ A) admits the density 4PatA with respect
to µ. One can proceed identically for the right-hand side of (7) so that for every
E measurable P(F ∈ E| X ∈ Ac and Y ∈ Ac) =

∫
E

4PatAc(g)dµ(g). From (7)
It follows the equality of the two Patterson functions at almost every g ∈ X. As
proved in [8, 21, 6, 15] this identity in fact holds not only for almost every but for
every g ∈ X.
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