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Abstract. Let µ = (µt)t∈R be a 1-parameter family of probability measures on R. In [11] we introduced its “Markov-quantile”
process: a process X = (Xt)t∈R that resembles as much as possible the quantile process attached to µ, among the Markov processes
attached to µ, i.e. whose family of marginal laws is µ.

In this article we look at the case where µ is absolutely continuous in the Wasserstein space P2(R). Then X is solution of a
dynamical transport problem with marginals (µt)t. It provides a Markov minimal Lagrangian probabilistic representative of µ, which
is moreover unique among the processes obtained as certain types of limits: limits for the finite dimensional topology of quantile
processes where the past is made independent of the future conditionally on the present at finitely many times, or limits of processes
linearly interpolating µ.

This raises new questions about ways to obtain Markov Lagrangian representatives, and to seek uniqueness properties in this
framework.

Résumé. Soit µ = (µt)t∈R une famille à un paramètre de mesures de probabilité sur R. Dans [11] nous introduisons le processus
“Markov-quantile” qui lui est attaché: c’est le processus X = (Xt)t∈R qui ressemble le plus qu’il est possible au processus quantile
associé à µ, parmi les processus markoviens associés à µ, c’est-à-dire dont la famille de marges est µ.

Dans cet article nous considérons le cas où µ est absolument continue dans l’espace de Wasserstein P2(R). Alors X est solution
d’un problème de transport dynamique, de marges (µt)t. Il fournit un représentant probabiliste lagrangien minimal markovien de µ.
Il est en outre unique parmi les processus obtenus comme certains types de limites : limites pour la topologie de dimension finie de
processus quantiles dont le passé est rendu indépendant du futur, conditionnellement au présent, en un nombre fini d’instants, ou limites
de processus interpolant linéairement µ.

Ceci soulève de nouvelles questions sur les manières d’obtenir des représentants lagrangiens markoviens, et de demander des
propriétés d’unicité dans ce cadre.
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1. Introduction

In [11] we introduced the “Markov-quantile” process attached to a 1-parameter family µ= (µt)t∈R of probability mea-
sures on R. It is a process in the broad sense, i.e. a 1-parameter family (Xt)t∈R of random variables defined on the same
probability space. For the distribution of (Xt)t∈R we adopted the notation MQ((µt)t∈R), or generally simply MQ, that
is a measure on RR equipped with the product σ-field. It can be called Markov-quantile measure but, by abuse of notation,
we occasionally identified it with the Markov-quantile process. As usual Xt may namely be chosen to be the projection
on the coordinate of label t for the canonical probability space Ω= RR equipped with MQ itself. The Markov-quantile
measure MQ is characterized by the following properties:

(a) µ is the family of its marginal laws, i.e., for each t, µt is the law of Xt,
(b) it is Markov,
(c) it resembles “as much as possible” the quantile process Q attached to µ.
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The meaning of (a) is ∀t ∈R, µt =MQ ◦X−1
t , and that of (b) is recalled in Definition 1.2. Remark 3.6 gives a practical

criterion for Markov measures. The meaning of (c) is made precise in §3. The quantile process Q((µt)t∈R) is the 1-
parameter family (Qt)t∈R of random variables on [0,1] with the Lebesgue measure, defined by: Qt(α) = xµt

(α), where
xµt(α) is the quantile of µt of order α ∈ [0,1]; see Reminder 2.4 for details. With this notation it is well-known that the
law of (Qt1 ,Qt2) is the optimal transport plan for the quadratic cost between µt1 and µt2 , as we recall in Reminder 2.5.

For all the details on MQ, we refer the reader to our initial article [11], in particular its introduction and its §1.5 where
we give an intuition of what a Markov process that is as similar as possible to the quantile process looks like, and why it
is difficult to define it. However, to avoid natural confusions some comments are in order:

• When the quantile process Q is Markov, we have MQ=Q. In fact both properties are equivalent. This happens in
particular for any µ satisfying µt(x) = 0 for every x and t (purely non atomic measures), see [11, Remark 1.8(a)].

• If the time index set [0,1] or R is replaced by N (or a finite set R = {r1, . . . , rn} ⊂ R with r1 < · · · < rn) there
exists a trivial solution to our problem. The process attached to (µn)n∈N can be called the quantile Markov chain
and consists in the inhomogeneous Markov chain with the quantile couplings (see Reminder 2.4 for this notion)
from µn to µn+1 used as transition kernels, see [11, Remark 1.16(b)].

• Our approach to define MQ can be seen in very far approximation as a “discrete to continuous” procedure where
we use partitions (Rn)n of the time index set [0,1] and the corresponding quantile Markov chains, defined as
suggested in the previous point. The difficulty in [11] is not in extracting converging subsequences but showing
that an adequate choice of the sequence of partitions enables to retain the Markov property at the limit. This last
property is in fact a problem as soon as (µt)t∈T is defined on a non discrete (but possibly still countable) T ⊂ [0,1].

In this article, we consider MQ in a more analytical context than in [11], that of the dynamical optimal transport theory
in duality with the continuity equation, notably in continuation with Lisini’s work [17]. We prove that MQ satisfies a
minimality property: the expected kinetic energy of the random curve of law MQ is as small as it can be for a process that
exactly interpolates µ. The novel aspect of this result is of course the Markov property. It comes with several promising
questions for which we give an account later, summed up in the last section.

Now 1.1 gives a few necessary elements for understanding and stating our Main Theorem, and 1.2 the article’s outline.

1.1. Preliminaries and Main Theorem

In [11], we dealt with any 1-parameter family of probability measures on R. In this article we consider only the —never-
theless still rich— set of continuous curves (µt)t∈[0,1] : [0,1]→P2(R) to the Wasserstein space over R. It provides the
advantage that Q and MQ will be identified with measures on C([0,1],R) (see Notation 1.1 just below, Remark 3.1 and
Remark 3.2). The reader may already have noticed another (secondary) difference: in this article the time set is [0,1].
Notation 1.1. (a) For every Polish (i.e., complete and separable) metric space (X ,d) we denote by C([0,1],X ) the space
of continuous curves from [0,1] to X —or simply by C specially when X = R—, with the σ-algebra induced by the
topology of ∥ · ∥∞. We are interested in P(C), that is the space of probability measures on it and we denote by MargC(µ)
the subset {Γ ∈ P(C) : Γt = µt for every t ∈ [0,1]} where Γt is Γ pushed forward by the map projt : γ ∈ C → γ(t).
Similarly we denote by Marg(µ) the subset of P

(
X [0,1]

)
defined by {Γ ∈ P

(
X [0,1]

)
: projt# Γ= µt for every t ∈ [0,1]}.

The convergence we consider on P(C) is the usual weak convergence of measures used in Probability Theory, i.e.,
Γn → Γ ∈ P(C) if and only if

∫
fdΓn →

∫
fdΓ for any bounded and continuous function f defined on C. Be cautious

that the same definition, applied to the case where the measures Γn and Γ are considered in X [0,1] endowed with the
product topology is equivalent to the convergence of the finite marginals, see [11, Reminder 1.11]. Both concepts can
accurately be called “weak convergence”. In the present paper to avoid confusion we call the less stringent notion of
convergence “finite dimensional convergence” and the convergence in P(C) “weak convergence”.

(b) Joint marginals of Γ ∈ P(C) or Γ ∈ P
(
X [0,1]

)
on several indices are denoted by (projr1,...,rm)#Γ or (projR)#Γ

for R= (r1, . . . , rm) where projr1,...,rm is the projection map projr1,...,rm : γ 7→ (γ(r1), . . . , γ(rm)). We also adopt the
shorthands ΓR and Γr1,...,rn . In case π = Γs,t with µs = Γs and µt = Γt we take the vocabulary of Optimal transport
saying that π is a transport plan or a coupling of µs and µt. The corresponding set is denoted by Marg(µs, µt). Generally
we note Marg((µt)t∈T ) the set of measures with marginals (µt)t∈T . Note finally that the finite dimensional convergence
Γn → Γ of the previous paragraph writes (projr1,...,rm)#Γn → (projr1,...,rm)#Γ, for every r1, . . . , rm ∈ [0,1].

(c) For every Polish space X we denote by P2(X ) the 2-Wasserstein space {µ ∈ P(X ) :
∫
d(x,x0)

2 dµ(x)<∞} over
X (here x0 is some and in fact any point of X ). The distance W2 defined on P2(X ) is recalled in Reminder 2.5.

The Markov property is a classical notion; though as it plays a central role in this article we recall its definition.
Definition 1.2 (Markov measure and Markov process). Let I be an interval and (Xt)t∈I be a process of law Γ. The
measure Γ is Markov if X is a Markov process in the usual sense, for which one of the formulations is:

(1) ∀s ∈ I,∀t > s,Law(Xt| (Xu)u⩽s) = Law(Xt|Xs),
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where Law(Xt| (Xu)u⩽s) is the law of Xt conditionally to the σ-algebra generated by the Xu for u⩽ s. (In this case (1)
is satisfied by any process X ′ of law Γ).

In our Main Theorem we use also the following notion, precisely built in Definition 3.5. We associate, with any process
measure Γ, the distribution “Γ made Markov at a finite set R⊂R of times”, denoted by Γ[R]. For any interval I disjoint
of R, the restrictions to I of (the canonical processes associated with) Γ and Γ[R] coincide. But for any two times s < t
separated by at least one element of R, the marginals at times s and t are independent knowing the value of the process
at any intermediate time in R. More generally the future of any r ∈R, conditional upon the present, is made independent
of its past. With this operation Remark 3.6 also provides a tractable characterization of the Markov measures that is
fundamental in this paper.
Convention 1.3. When we introduce sets {r1, . . . , rm}, we mean implicitly r1 < . . . < rm, if not otherwise indicated.

The (kinetic) energy E(γ) of a mapping γ : [0,1] 7→ X in a metric space (X ,d) may be introduced as follows:

(2) E : γ ∈ C([0,1],X ) 7→ sup
R

m∑
k=0

d(γ(rk), γ(rk+1))
2

rk+1 − rk
∈ [0,+∞],

where R= {r1, . . . , rm} ⊂ ]0,1[ and (r0, rm+1) = (0,1). Actually, finite energy implies continuity: if Expression (2) is
finite, then γ is continuous (see Proposition 2.3(a)). Furthermore, E(γ) =

∫ 1

0
|γ̇|2(t)dt in a sense that is recalled in §2.2.

This notion of energy leads to the well-known notion of action, which is central in our article:
Definition 1.4. If Γ ∈ P((Rd)[0,1]) is concentrated (see Remark 3.1) on C([0,1],Rd) its action A(Γ) is defined as:

A(Γ) =

∫
C([0,1],Rd)

E(γ)dΓ(γ).

The action satisfies the following classical inequality involving energies for curves in Rd and P(Rd); its proof will be
recalled in Remark 2.6: for all Γ ∈ P(C([0,1],Rd)), if (projt)#Γ ∈ P2(Rd) for all t ∈ [0,1],

(3) A(Γ)⩾ E((Γt)t∈[0,1]), where Γt :=(projt)#Γ,

where the distance d involved in the definition of A, through (2), is the Euclidean distance on Rd, and the distance
involved in that of E , on the right side, the Wasserstein distance W2 induced by d on P2(Rd). Note that a central aspect
of the present paper is the analysis of how the equality case in (3) can occur.
Definition 1.5. We call “minimal Lagrangian representative” of µ a measure Γ ∈MargC(µ) such that (3) is an equality.

We prove two convergence results, of close types, Theorem 4.3, i.e., our Main Theorem, and Theorem 4.6, both
presented in §4. Our Main Theorem comes as a refinement of well-known results on minimal representatives attached
to a curve (µt)t that are gathered in Theorem 2.1 ; it rests on our building of the Markov-quantile process and gives the
existence of a Markov minimal Lagrangian representative, which is completely new and is the main point of the present
article. This gives naturally rise to the question of whether a Markov process is unique among the minimal Lagrangian
representatives. The answer is no, see Example 1.6. Though we state a weak result of uniqueness: it follows from the
uniqueness of MQ proved in [11] that such a Markov representative is unique among the limits of measures of quantile
processes made Markov “at a finite set of times” in [0,1].

Main Theorem (i.e., Theorem 4.3). Let µ= (µt)t∈[0,1] be a curve of finite energy E(µ)<∞ in P2(R).

(a) (Existence of a Markov minimal Lagrangian representative) There exists a minimal Lagrangian representative Γ
for µ, i.e., such that (3) is an equality, namely

∫
E(γ)dΓ(γ) = E(µ), that satisfies:

• Γ is Markov,
• there exists a nested (i.e., increasing) sequence (Rn)n∈N of finite subsets of ]0,1[ such that Q[Rn] (see page 3 and

Definition 3.5 for this measure) converges to Γ in P(C).

(b) (Weak uniqueness property) If a minimal Lagrangian representative Γ satisfies both points of (a) then it is MQ.

The following example shows that in general Markov minimal Lagrangian representatives are not uniquely determined.
Example 1.6 (Non uniqueness for Markov minimal Lagrangian representatives, see Example 5.4 in [11]). Let µt be
λ[t−3/4,t−1/4] +

1
2δ0 (where λ[a,b] is the Lebesgue measure restricted to [a, b]) and Γ ∈ P(C([0,1],R) be a measure

concentrated on the affine trajectories defined by Γ(t 7→ 0) = 1/2 and Γ({t 7→ x0 + t : x0 ∈A}) = λ[−3/4,1/4](A). This
measure Γ is a Lagrangian representative of the continuity equation attached to (µt)t∈[0,1]. It is a minimizer of the action
under marginal constraints. It is also Markov but it is not the Markov-quantile measure.
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It is an open question for us to find properties enhancing the first point of (a), e.g., perhaps the strong Markov property,
or properties alternative to the second point, to make MQ the unique Markov minimal Lagrangian representative. Note
that [11] provides further characterizations of the Markov-quantile measure that are based on the stochastic orders.

We end §4 with Theorem 4.6. Its statement is too technical to be given in this introduction. It obtains the process MQ
as the unique Markov limit of a sequence of processes that geodesically –in the sense of Optimal Transport, see Definition
4.4– interpolate (µt)t∈[0,1], instead of the sequence (Q[Rn])n in the Main Theorem. The point is that it provides a type of
construction that does not rely on the quantile process and that makes sense in Rd for any d and still furnishes minimal
Lagrangian representative. However, for d > 1 it is not known whether some adequate choices in the construction can
make it Markov. One of our main sources of inspiration is Lisini’s paper [17] whose results are similar though our
construction differs from it in several points, see Remark 4.7. Lisini uses a sequence of dyadic partitions to attach a
minimal Lagrangian representative to each absolutely continuous of order p > 1 curve (µt)t∈[0,1] of measures on metric
spaces X that are more general than Rd.

We stress that the Markov property was up to now not involved in the a priori rather analytic context of the dynamical
Optimal Transport. As explained in §1.3 of [11], we came to involve it while we were considering Kellerer’s Theorem
[16], that is nowadays mostly represented in Martingale Optimal Transport (and Peacocks), a young subfield of Optimal
Transport that takes advantage of the older tradition of “classical” Optimal Transport. We found it particularly interesting
to bring the other way around with the Markov property a new ingredient back to the parent theory.

1.2. Outline of the article

In §2 we give a brief historical overview of the set of problems in which our results take place; this introduces the main
concepts at stake and motivates our work. In §3 we gather the few elements of [11] on which the present work relies, and
that are necessary to its understanding. Theorems 2.1 and 3.8 are good summaries of the these two prelininary sections.
In §4 we state and prove Theorem 4.3, that is our Main Theorem above, and Theorem 4.6. Finally §5 presents some open
questions raised by our 1-dimensional result.

2. State of the art

As we briefly mentioned at the beginning of the introduction and explain below in Reminder 2.5, quantile couplings are
optimal transport plans for the quadratic cost function. This suggests that the quantile process Q is a minimizer for some
dynamical optimal transport problems. This is true and rather well-known ; one approach is in [20] (see also [7]). In this
section we recall another standard approach that formulates optimality in terms of minimal Lagrangian representatives.
Subsection §2.1 explains the framework and concludes with Theorem 2.1. In §2.2 we prepare the following with useful
definitions and results on E and A.

2.1. Historical framework and reminders on minimal representatives

The origin of this research goes back to the interpretation by Arnold in [5] of the solutions of the incompressible Euler
equations on a compact Riemannian manifold as geodesic curves in the space of diffeomorphisms preserving the volume.
In [12], Brenier relaxed the minimization problem attached to those geodesics and introduced generalized geodesics
that are, in probabilistic terms, continuous processes X = (Xt)t∈[0,1] with Law(Xt) equal to the Riemannian volume
at every time. The quantity to minimize is the action A(X) = E

∫ 1

0
|Ẋt|2 dt =

∫ 1

0
E|Ẋt|2 dt, under the constraint that

the marginals Law(Xt) and Law(X0,X1) are prescribed. Later, see [15, 19], Otto and his coauthors discovered that the
solutions of some PDEs, in particular the Fokker–Planck and porous medium equations can be thought of as curves of
maximal (negative) slope for some entropy functionals in the space of probability measures P2(Rd) endowed with the
2-transport distance (alias Wasserstein distance). It catches a comprehensive picture of the infinite dimensional manifold
of measures used in optimal transport, building a differential calculus on it, called “Otto calculus”. In this context, the
derivative of the curve (µt)t at time t shall be seen as a vector field vt of gradient type, square integrable with respect to
µt, such that the continuity equation:

(4)
d

dt
µt +div(µtvt) = 0

is satisfied. This special (non homogeneous) vector field is precisely the minimizer of
∫∫

|vt|2 dµtdt among the vector
fields satisfying (4), the corresponding value being E(µ). A thorough study of those questions has been conducted in the
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monograph [2] by Ambrosio, Gigli and Savaré (see also [3, 9, 18]) under very loose assumptions on the curve (µt)t and
the vector field (vt)t. They proved, in particular, that the vector field (vt)t of minimal energy is uniquely determined if
(µt)t is absolutely continuous of order 2 (see “AC2” in §2.2). They showed also that a process minimizing the action, for
prescribed marginals µt, exists, by using limits of solutions of mollified versions of (4). Almost every trajectory of this
process is in fact solution of the Cauchy problem Ẋt = vt(Xt). Furthermore, all the minimal Lagrangian representatives
(Xt)t are tangent to the minimizing vector field v = (vt)t attached to µ. Note that in the case of smooth enough curves
(µt)t, the vector field (vt)t is also smooth and the minimal Lagrangian representative is uniquely determined. But in
general whereas this field v is unique, no uniqueness statement is satisfied by (Xt)t. In a further work [17], Lisini
studied, in fact in a broader framework, the AC2 curves of probability measures on a metric space. In this context where
the continuity equation is not defined, he also proved that there exists a minimal Lagrangian representative. The following
is standard and based on the works of Ambrosio–Gigli–Savaré and Lisini.

Theorem 2.1 (Existence and uniqueness for minimal representatives). Take a curve µ= (µt)t∈[0,1] in Wasserstein space
P2(Rd) with finite energy E(µ). Then:

(a) (Eulerian statement) There exists a family (vt)t∈[0,1] of vector fields satisfying the continuity equation (4) and such
that the inequality: ∫ 1

0

∫
|vt|2 dµt dt⩾ E(µ)

becomes an equality. This family is unique.

(b) (Lagrangian statement) There exists Γ ∈MargC(µ) such that Inequality (3): A(Γ)⩾ E(µ) is an equality.

(c) (Link between them) For any Γ minimizing the action, i.e., making (3) an equality, the curve γ ∈ C is Γ-almost
surely a solution of the ODE:

γ̇(t) = vt(γt),

for almost every time.

The uniqueness of (vt)t∈[0,1] in (a) encourages to seek, among the processes (Xt)t in (b), processes satisfying some
additional properties, trying by that to yield uniqueness. This is what we do in Theorems 4.3 and 4.6 with MQ.

2.2. Some reminders on the energy E of a curve of probabilities and the action A of a probability on curves.

The definitions and results on curves, their energy and the Wasserstein distance recalled here are close to Brenier’s paper
[12, Section 3]. These reminders are required to prove later that Q and MQ are minimal Lagrangian representatives, what
is done respectively in Remark 2.6 and Section 4, the former being rather basic the latter being new.
Reminder/Notation 2.2. Let (X ,d) be a metric space and γ a curve in C([0,1],X ). The curve γ is said to be absolutely
continuous of order p ⩾ 1 and we note γ ∈ ACp([0,1],X ) (or simply ACp) if there exists m ∈ Lp([0,1],R) such that
d(γ(a), γ(b)) ⩽

∫ b

a
mdλ for every a < b. If γ ∈ ACp, an admissible choice for m is the so-called metric derivative |γ̇|

defined for almost every t by:

|γ̇|(t) = lim
h→0

d(γ(t+ h), γ(t))

h
.

(if (X ,d) = (Rn,∥ · ∥) and γ is differentiable at t, this is ∥γ̇(t)∥, so the notation is consistent).
Recall that E(γ) was introduced in (2) for a curve γ parametrized on [0,1]. The definition extends trivially for curves

on [a, b]. A partition of an interval [a, b] is a finite subset R= {r0, . . . , rm+1} of [a, b] with (r0, rm+1) = (a, b). The mesh
|R| of R is maxmk=0 |rk+1 − rk|. We denote by E(γ,R) the quantity approximating E(γ) on the right-hand side in (2).
The next proposition gathers well-known facts on E .

Proposition 2.3. Let γ be a mapping from [a, b] to X . Then:

(a) If E(γ)<∞ then γ is continuous.
(b) (i) If a partition R′ is finer than R, E(γ,R) ⩽ E(γ,R′). (ii) If γ is continuous, the limit lim|R|→0 E(γ,R) is

well-defined and equals E(γ). (iii) E(γ) is finite if and only if γ ∈AC2([a, b],X ); in this case E(γ) =
∫ b

a
|γ̇|2(t)dt.

(c) E(γ) is lower semi-continuous for the uniform convergence.

Remark 2.6 recalls properties of A introduced in Definition 1.4. Its points (c, d) use Reminders 2.4 and 2.5.
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Reminder 2.4 (Quantiles). The quantile of level α of a measure µ ∈ M(R) is the smallest real number xµ(α) such
that µ(]−∞, xµ(α)]) ⩾ α and µ([xµ(α),+∞[) ⩾ 1 − α. The quantile process (Qτ )τ∈T , defined on Ω = [0,1] with
the Lebesgue measure, is given by Qt(α) = xµt(α), and we denote Law(Q) by Q ∈ Marg((µt)t∈T ). In particular
Law(Qt) = µt for every t ∈ T . See Definition 3.23 of [11] for full details. When T has cardinal 2, Q is called the
quantile transport (plan) or the quantile coupling (it is a slight abuse since couplings are usually random variables).
Reminder 2.5 (Optimal transport). On P(Rd)2 the following infimum (minimum by the Prokhorov Theorem) has all the
properties of a distance except that it may be infinite; it is called the 2-Wasserstein distance:

(5) W2(µ,ν) = min
P∈Marg(µ,ν)

√∫
∥y− x∥2dP (x, y).

On the Wasserstein space (recall Notation 1.1), W2 is finite, thus is a true distance. A minimizer P of (5) is called an op-
timal transport plan between µ and ν. If d= 1 and W2(µ,ν)<∞ the quantile coupling Q(µ,ν) introduced in Reminder
2.4 is the unique optimal transport plan, see for instance [21]. Therefore, for the quantile process Q ∈Marg((µt)t):

(6) W2(µs, µt) =

√∫
|y− x|2 dQs,t(x, y).

Remark 2.6. (a) If A(Γ)<+∞, Γ is in fact concentrated on AC2.
(b) If Γ is a measure on C, e.g., an element of MargC(µ), then:

A(Γ) :=

∫
C

lim
|R|→0

E(γ,R)dΓ(γ) = lim
|R|→0

∫
C
E(γ,R)dΓ(γ)(7)

because of the monotone convergence theorem: use a monotone sequence of partitions and Proposition 2.3(b).
(c) If Γ ∈MargC(µ), then:

(8) A(Γ)⩾ E(µ).

Indeed: ∫
C
E(γ,R)dΓ(γ) =

∫
C

m∑
k=1

∥γ(rk)− γ(rk+1)∥2/(rk+1 − rk)dΓ(γ)

=

m∑
k=1

(∫
C
∥γ(rk)− γ(rk+1)∥2/(rk+1 − rk)dΓ(γ)

)
(9)

⩾
m∑

k=1

W2(µrk , µrk+1
)2/(rk+1 − rk) = E(µ,R).

The inequality comes from the fact that (projrk,rk+1)#Γ is in Marg(µrk , µrk+1
), so that

∫
C ∥γ(rk)−γ(rk+1)∥2 dΓ(γ)⩾

W2(µrk , µrk+1
)2. Now, thanks to (7), when |R| tends to 0 this provides A(Γ)⩾ E(µ).

(d) In dimension 1 if E(µ) < +∞ then Q is a minimal Lagrangian representative: by (6) endowed in (c), equality
occurs in (9) for Γ=Q, thus A(Q) = E(µ). We used that Q is concentrated on C. This is discussed in Remark 3.2.

3. The Markov-quantile process MQ attached to µ

We gather below the main notions of [11] the present article relies on like concatanation (Definition 3.4) and measure
made Markov at the times of a partition (Definition 3.5). Theorem 3.8 that concludes the section is the core of the theorems
in [11]. However, let us start with an important measure theoretic remark.
Remark 3.1. As will deal with measures in MargC((µt)t), but make use of theorems about Marg((µt)t), we wish to see
MargC((µt)t) as a subset of Marg((µt)t), i.e., to give a meaning to the subset “{Q ∈Marg((µt)t) |Q(C([0,1],Rd)) =
1}”, which makes no sense as C([0,1],Rd) is not in the cylindrical σ-algebra of (Rd)[0,1]. It is classically done as follows.
For any Q ∈ Marg((µt)t), we will say that Q is “concentrated on C” if, for any dense countable subset D of [0,1],
Q({f ∈ (Rd)[0,1] |f|D is uniformly continuous}) = 1; the latter subset is in the cylindrical σ-algebra of (Rd)[0,1], as it
is a countable union of countable intersections of open sets of the product topology. Notice that the uniform continuity
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condition amounts to the fact that f|D extends as a continuous function on [0,1]. Then MargC((µt)t) and the set of
measures of Marg((µt)t) concentrated on C are in 1-1 correspondence as follows.

– If Γ ∈MargC((µt)t), you can define Γ̂ ∈Marg((µt)t) concentrated on C, by Γ̂ :B 7→ Γ(B ∩ C([0,1],Rd)).
– If Q ∈ Marg((µt)t), take any (its choice will not matter) countable dense subset D of [0,1] and define Q̌ ∈

MargC((µt)t) by Q̌ : B 7→ Q({f ∈ (Rd)[0,1] | ∃g ∈ B : f|D = g|D}). We let the reader check that, as D is countable,
the latter subset is in the cylindrical σ-algebra and that, in restriction to the the set of measures concentrated on C, the
definition of Q̌ is independent of the choice of D, Q 7→ Q̌ is injective, and Γ 7→ Γ̂ is its inverse function.

So by a slight abuse, we will not distinguish Γ and Γ̂ or Q and Q̌. For Γ ∈MargC((µt)t) and R a finite subset of R,
this gives sense, e.g., to Γ[R] after Definition 3.5.
Remark 3.2. In Remark 2.6(d) we used (7) voluntarily without justification to simplify the purpose. In fact since we don’t
know whether t ∈ [0,1] 7→Qt(α) (remind Reminder 2.4) is continuous for almost every α ∈ [0,1] we need to prove that
Q is concentrated on C in the sense of Remark 3.1. In a nutshell this can be shown as follows: if E(µ)<+∞, for every
increasing sequence of partitions (Rn)n with R∞ =

⋃
nRn dense in [0,1] we have limn→∞

∫
R[0,1] E(γ,Rn)dQ(γ) ⩽

E(µ) < +∞. Therefore, by the monotone convergence theorem, γ|R∞ has Q-almost surely finite energy as a mapping
defined on R∞. Since R∞ is arbitrary chosen, this suffices to prove that Q is concentrated on C as defined in Remark 3.1.

Now E stands for some Polish space and B(E) for the set of its Borel subsets.
Definition/Notation 3.3. A probability kernel, or kernel k from E to E′ is a map k :E ×B(E′)→ [0,1] such that k(x, ·)
is a probability measure on E′ for every x in E and k(·,B) is a measurable map for every B ∈ B(E′).

Every transport plan P ∈ P(E × E′) can be disintegrated with respect to its first marginal P 1 := (proj1)#P and a
kernel that we denote by kP , defined from E to E′, so that, for every bounded continuous function f :∫∫

f(x, y)dP (x, y) =

∫ (∫
f(x, y)kP (x,dy)

)
dP 1(x)

The two following concepts may appear unusual. The interested reader is invited to consult [11] for more details.
Definition 3.4 (See [11], Definition 2.8). If µi ∈ P(Ei) for i ∈ {1,2,3}, P1,2 ∈Marg(µ1, µ2) and P2,3 ∈Marg(µ2, µ3),
their concatenation P1,2 ◦ P2,3 is the unique R ∈ P(E1 ×E2 ×E3) such that for every (B1,B2,B3) ∈

∏3
i=1B(Ei):

R(B1 ×B2 ×B3) =

∫
x∈B1

∫
y∈B2

∫
z∈B3

dµ1(x)k1,2(x,dy)k2,3(y,dz).(10)

In particular, R ∈Marg(µ1, µ2, µ3), (proj1,2)#R= P1,2, and (proj2,3)#R= P2,3.
Definition 3.5 (See Definition 4.18 of [11]). If Γ ∈ Marg((µt)t) and if R = {r1, . . . , rm} ⊂ R we denote by Γ[R] ∈
Marg((µt)t) the measure Γ made Markov at the points of R defined by the data of its finite marginals (projS)#Γ[R], for
all finite S containing R, as follows.

(projS)#Γ[R] =Γs01,...,s
0
n0

,r1 ◦ Γr1,s
1
1,...,s

1
n1

,r2 ◦ · · · ◦ Γrm,sm1 ,...,smnm︸ ︷︷ ︸
(denoted immediately below by ΓS )

,

where S = {s01, . . . , s0n0
, r1, s

1
1, . . . , s

1
n1
, r2, . . . , rm, sm1 , . . . , smnm

} and where the first or last term disappears if n0 or nm

is null, respectively. These marginals are consistent in the sense that for all finite subsets S and S′ of R, containing R,
S′ ⊂ S ⇒ (projS

′
)#ΓS =ΓS′ . So by the Kolomogorov-Daniell theorem (see Proposition 2.12 of [11]), this defines Γ[R].

We also commit an abuse of language: Γ[R] is rather the “law of a process X of law Γ, made Markov at the points of R”.
Remark 3.6. Let I be some interval. A process X = (Xt)t∈I and Γ ∈ P(RI) its measure; X is therefore Markov (see
Definition 1.2) if and only if, for any finite subset R of I , Γ[R] =Γ.
Remark 3.7. Note that if Γ is concentrated on MargC(µ) then Γ[R] is also concentrated on MargC(µ).

Here are the parts of Theorems A and B of [11] that are used in this article.

Theorem 3.8 (From the main theorems in [11]). There exists one and only one Markov law MQ that is a limit in the
finite-dimensional sense of sequences of laws of type (Q[Rn]), being (Rn) an increasing sequence of finite subsets of R.
Moreover, one can assume that R∞ = ∪nRn is dense in R.

Proof. The existence of such an increasing sequence (Rn)n∈N such that Q[Rn] converges to MQ in the finite-dimensional
sense comes from [11, Theorem B] (where the finite-dimensional convergence is called weak convergence). The unique-
ness comes from the uniqueness of MQ as a Markov measure satisfying (iv) in [11, Theorem A]. The density statement
comes from (c)(i) in [11, Theorem 4.21] that is a more detailed version of Theorem B.
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Remark 3.9. The claim of page 1 that MQ resembles as much as possible the quantile process Q attached to µ clearly
appears in Theorem 3.8. It is also strengthened from the side of the stochastic orders by (a)(iii) of Theorem A in [11].

4. Our resulting theorems on MQ as a minimizer in this context

In this section we state and prove our theorems. In Lemma 4.1 and Proposition 4.2 we pursue our investigation on Q
started in Remark 2.6 with new results on Q[R] and MQ, respectively. Then we prove Theorem 4.3 and Theorem 4.6.

Lemma 4.1 (Q and Q[R] are minimal Lagrangian representatives). Let µ = (µt)t∈[0,1] be a family of real measures in
P2(R) and Q the attached quantile process. We assume that Q is concentrated on C so that A(Q) makes sense (this hap-
pens as soon as E(µ)<∞, recall Remark 3.2). Let R be a partition of [0,1]. Then A(Q[R]) =A(Q) (= E(µ) ∈ [0,+∞]).

Proof. The equality A(Q) = E(µ) is part of Remark 2.6. In fact the other equality A(Γ) =A(Γ[R]) is satisfied not only
for Γ=Q but for any Γ concentrated on C([0,1],Rd) even for d > 1. Please look at Remark 2.6 and consider the equality
in (9) to see that for partitions (Rn)n∈N finer than R one has

∫
E(γ,Rn)dΓ(γ) =

∫
E(γ,Rn)dΓ[R](γ). For a sequence of

such partitions, by (7) one gets:

A(Γ[R]) = lim
|Rn|→0

∫
E(γ,Rn)dΓ[R](γ) = lim

|Rn|→0

∫
E(γ,Rn)dΓ(γ) =A(Γ).

Lemma 4.1 “passes to the (finite dimensional) limit” when (Rn)n is such that Q[Rn](µ) −→
n→∞

P , where P ∈
MargC(µ) coincides with the Markov-quantile measure MQ (in the sense of Remark 3.1). Recall that, for simplicity,
depending on the context we see MQ (or Q) as an element of MargC(µ)⊂P(C) or Marg(µ)⊂P(R[0,1]).

Proposition 4.2. The Markov-quantile process MQ ∈Marg(µ) satisfies A(MQ) = E(µ). Moreover for every (Rn)n
as in Theorem 3.8, (Q[Rn])n converges weakly to MQ in MargC(µ)⊂P(C).

Proof. Let (Rn)n be a sequence of partitions of [0,1] such that Q[Rn] → MQ in the finite-dimensional sense as in
Theorem 3.8. To get the result, it suffices to recall that A is lower semi-continuous (Proposition 2.3(c)) and that it is
known to have compact sublevels in the weak topology, see [1, Proof of Theorem 3.3]. With Lemma 4.1, it implies that any
subsequence s of (Q[Rn])n admits a (weak, and hence finite-dimensional) limit point Γs. By uniqueness Γs is always MQ
so that we have proved Q[Rn] →MQ weakly. Hence A(MQ)⩽A(Q[Rn]) = E(µ), so by (8), A(MQ) = E(µ).

Here is our Main Theorem. Notice that by Theorem 2.1(c), the random curves of the Markov-quantile process are
integral curves of the minimizing vector field in Theorem 2.1(a).

Theorem 4.3 (MQ is a Markov minimal Lagrangian representative). Take a curve µ= (µt)t∈[0,1] in Wasserstein space
P2(R) with finite energy E(µ). There exists Γ ∈MargC(µ) such that:

(a) Inequality (8): A(Γ)⩾ E(µ) is an equality,
(b) the measure Γ is Markov,
(c) it is the limit in P(C) of a sequence (Q[Rn])n.

Such a Γ is unique in MargC(µ); it is the Markov-quantile process MQ.

Proof. Proposition 4.2 shows that Γ=MQ satisfies (a)–(c). Theorem 3.8 implies uniqueness from (b) and (c).

To state our second result, Theorem 4.6, we need to introduce the following definition. In it, remember that an optimal
transport plan is defined in Reminder 2.5.
Definition 4.4. Let R = {r0, r1, . . . , rm, rm+1} be a partition of [0,1] and µ = (µt)t∈[0,1] ∈ P(Rd)[0,1]. We denote by
DispR(µ) or more simply DispR the set of measures Γ ∈ P(C([0,1],Rd)) such that: (i) conditionally on any ‘present’
time r ∈ R, the past is independent from the future; (ii) Γ interpolates linearly (hence in fact optimally) µri and µri+1

.
The conditions for Γ to be in Disp[R] are more concretely the following: for each i ∈ {0, . . . ,m},

(a) the coupling Γri,ri+1 ∈Marg(µri , µri+1) is an optimal transport plan between µri and µri+1 ,
(b) for {λ1, . . . , λn} ⊂ [0,1] and mλ : (x, y) ∈ (Rd)2 7→ λy+ (1− λ)x, we have:

(mλ1 , . . . ,mλn)#Γ
ri,ri+1 =Γmλ1 (ri,ri+1),...,m

λn (ri,ri+1),
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(c) for all finite S = {s01, . . . , s0n0
, r1, s

1
1, . . . , s

1
n1
, r2, . . . , rm, sm1 , . . . , smnm

} containing R\{r0, rm+1}= {r1, . . . , rm},

(projS)#Γ= Γs01,...,s
0
n0

,r1 ◦ Γr1,s
1
1,...,s

1
n1

,r2 ◦ . . . ◦ Γrm,sm1 ,...,smnm ,

where the first and/or last terms disappear if n0 and/or nm is null.
Remark 4.5. Note that #DispR = 1 if and only if each set Marg(µri , µri+1

), appearing in (a), contains a unique optimal
transport. It is the case when d= 1, where Marg(µri , µri+1) = {Q(µri , µri+1)}, see Reminder 2.5.

Theorem 4.6. Let d be a positive integer and µ = (µt)t∈[0,1] a curve of finite energy in P2(Rd). For every nested (i.e.,
increasing) sequence (Rn)n of finite subsets Rn of [0,1], with R∞ := ∪nRn dense in [0,1], and Γn ∈DispRn

for all
n ∈N, there exists Γ ∈MargC(µ) that is the limit in P(C([0,1],Rd)) of a subsequence of (Γn)n. Moreover for every Γ
obtained in this way the action A(Γ) is minimal, i.e., such that Inequality (8) is an equality.

Moreover, in dimension d= 1, a Markov limit Γ exists and if a limit Γ is Markov, it is the Markov-quantile measure in
MargC((µt)t∈[0,1]).

Proof. Adapting [22, Chapter 7] (written in the spirit of [10]), [17] or Proposition 4.2 to our context we obtain the
first part of the theorem for every d ⩾ 1. This requires slight modifications that we do not detail: Villani’s chapter is in
fact written for geodesic curves (µt)t between prescribed µ0 and µ1 whereas Lisini’s processes are attached to curves
(µt)t∈[0,1] of finite energy but the processes of the sequence are constant on each interval between two consecutive points
of the partition, whereas ours is linear. Note, as an indication, that our measures Γn minimize A in {Γ ∈ P(C([0,1],Rd)) :
∀r ∈Rn, Γ

r = µr}, the minimum being A(Γn) = E(µ,Rn).
In case d = 1, take the nested sequence (Rn)n given by Theorem 3.8, then Q[Rn] converges to MQ in P(C) by

Proposition 4.2. Up to taking a subsequence, the same sequence of partitions permits Γn ∈DispRn
to converge to some

Γ. By Definitions 3.5 and 4.4, for every S ⊂Rn the measure (projS)#Γn coincides with (projS)#Q[Rn] so that

(projS)#Γ= (projS)#MQ.

As R∞ is dense in [0,1] and the measures are concentrated on C we have Γ=MQ. This proves the existence for d= 1.
To establish uniqueness, take as before a nested sequence (Rn)n and let Γn be the single element of DispRn

(see Remark 4.5). Assume that (Γn)n has a Markov limit Γ. By Definitions 3.5 and 4.4, for every S ⊂ Rn the
measure (projS)#Γn coincides with (projS)#Q[Rn]. Using the same argument as for Proposition 4.2, up to taking
a subsequence, (Q[Rn])n converges to an element of MargC(µ) that we denote by Γ′. Hence for every S ⊂ R∞,
(projS)#Γ = (projS)#Γ

′. As R∞ is dense in [0,1] and Γ, Γ′ are concentrated on C we have Γ′ = Γ. Therefore Γ′

is Markov. Uniqueness in Theorem 3.8 implies Γ′ =MQ. Thus MQ is the unique possible Markov limit for (Γn)n.

Remark 4.7. Our work differs from Lisini’s paper [17] in several points. In Theorem 4.6: (i) we restrict the range of
application to X = Rd, (ii) our interpolations are continuous and piecewise linear instead of piecewise constant, (iii) we
consider the uniform distance between the curves and the resulting weak convergence, instead of the weak topology on
Lp([0,1],X ), (iv) our partitions are adapted in order to ensure (in case d= 1) the Markov property at the limit while the
partitions in [17] are dyadic.

5. Open questions: a Markov minimizer for the action in metric spaces

Let us finish by mentioning possible connection of our theorems with a stream of research whose latest developments are
to be found in the so-called Brenier–Schrödinger problem (see for instance the works by Arnaudon et al. [4], Benamou,
Carlier and Nenna [8], Baradat and Léonard [6], and the references therein). In this modified problem the trajectories
become diffusion trajectories with drift and the new setting comes together with a natural action functional for the quan-
tification of large deviations. It corresponds to an entropic minimization problem over the flows (the name given there
for Γ) with marginals prescribed at any times (in the basic problem, the same measure for every t ∈ [0,1]) and prescribed
joint law between the terminal measures. As a referee pointed out to us the situation is even closer to the setting studied
by Dawson and Gärtner [13] where, as in our situation, the last condition is not prescribed. Since the minimizer of the
entropy is Markov (see [14, Section 1.4 of Chapter II]) it is tempting to figure out that some alternative approach could
exist for constructing the Markov-quantile process. However, until now we failed to create this connection, one major
obstruction being that the measures µt in the family µ= (µt)t∈[0,1] apparently have to be diffuse, another related funda-
mental obstruction being the non stability of the Markov property for the family of processes attached to a one-parameter
family of mollifiers (µε)ε>0.
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We gather here the main questions arising in the paper.
(a) We proved that choosing the sequence (Rn)n properly, the approach introduced by Lisini to build Lagrangian rep-

resentatives converges in dimension d= 1 towards a Markov process, so that there exists a Markov minimal Lagrangian
representative. Is it still true in higher dimension? In geodesic spaces? Also, in dimension d= 1, we saw that there is only
one possible Markov limit for this approach, namely the Markov-quantile process. Can also this be generalized?

(b) Can MQ or more general objects in Polish spaces be equivalently introduced through a large deviation approach
inspired by the Schrödinger problem? See the paragraph just before.

(c) Other questions are listed in §5 of our first paper [11]. Is for instance MQ a strongly Markov process? Example
1.6 shows that the simple Markov property fails to uniquely determine MQ among minimal Lagrangian representatives.
Can it be characterized by a more stringent stochastic property?
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