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Abstract. We discuss the reconciliation problem between probability
measures: given n > 2 probability spaces (Ω,F1,P1), . . . , (Ω,Fn,Pn)
with a common sample space, does there exist an overall probability
measure P on F = σ(F1, . . . ,Fn) such that, for all i, the restriction of
P to Fi coincides with Pi ? General criteria for the existence of a rec-
onciliation are stated, along with some counterexamples that highlight
some delicate issues. Connections to earlier (recent and far less recent)
work are discussed, and elementary self-contained proofs for the various
results are given.

1. Introduction

Consider a finite number n > 2 of probability spaces all built upon the
same sample space Ω, and denoted by (Ω,F1,P1), . . . , (Ω,Fn,Pn). We ask
whether it is possible to reconcile these n probability spaces, meaning that
there exists a probability measure P on F = σ(F1, . . . ,Fn) such that, for all
1 6 i 6 n, the restriction of P to Fi coincides with Pi. In such a case, we
say that P provides a reconciliation of the probability measures P1, . . . ,Pn.

This is a natural problem from a modeling perspective, where several prob-
abilistic models may be available, each describing a specific aspect of the
situation under study. The question is then the existence of a probabilistic
model which simultaneously incorporates the previous specific models into
a global one. Scenario aggregation (see e.g. [4]) and coherent belief mod-
eling (see e.g. [1]) are two examples where related (though not equivalent)
problems appear.

Note that, in general, the σ−fields F1, . . . ,Fn correspond to distinct but
not completely unrelated families of events, which leads to additional con-
straints on a potential reconciliation P beyond the mere requirement that
P|Fi

= Pi for all i. For instance, one may have two events Ai ∈ Fi and
Aj ∈ Fj for which Ai ∩ Aj = ∅ with i 6= j, so that any potential recon-
ciliation P should satisfy P(Ai ∩ Aj) = ∅. As a consequence, even in the
simple case where all σ−fields are assumed to be finite, the existence of a
reconciliation P is neither automatic nor a trivial question.

In this paper, we first state a characterization of the existence of a recon-
ciliation in the case of finite σ−fields. For n = 2, a very simple criterion is
obtained, while the corresponding criterion in the general case n > 2 looks
more complicated. Through a counterexample, we show that as simple a cri-
terion as in the case n = 2 cannot be expected to hold in general. We then
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discuss the extension of these results to the case of more general (infinite)
σ−fields. Through a counterexample, we show that additional conditions
are required for such an extension to hold, then give one example of such
conditions.

Note that the positive results stated in this paper can in fact be derived
as corollaries of results obtained some decades ago by various authors, as
we gradually became aware while completing the present study. The recon-
ciliation problem as formulated above is neither the main motivation nor a
notable example in these works, and we believe that the short self-contained
proofs provided in the present paper are still of interest. Moreover, the coun-
terexamples we provide highlight some interesting issues that are specific to
the reconciliation problem.

The rest of the paper is organized as follows. Part 1.1 is devoted to the
statement of the results (positive and negative). Connections with earlier
work are discussed in Part 1.2. Finally, proofs of the various results are
collected in Section 2.

1.1. Statement of results.

1.1.1. The finite case. Throughout this section, the σ−fields F1, . . . ,Fn on
Ω are assumed to comprise a finite number of events. Extensions to the
infinite case are discussed in the next section.

The first result deals with the case of two probability spaces (n = 2),
where we have the following characterization of when a reconciliation exists.

Theorem 1.1. Assume that F1 and F2 comprise a finite number of events.
Then it is possible to reconcile (Ω,F1,P1) and (Ω,F2,P2) if and only if

P1(E1) 6 P2(E2) for every E1 ⊂ E2 with E1 ∈ F1 and E2 ∈ F2.(1)

Note that condition (1) is clearly necessary since, given a reconciliation P,
one must have P1(E1) = P(E1) 6 P(E2) 6 P2(E2) as soon as E1 ⊂ E2. The
non-trivial part of the theorem lies in the fact that condition (1) is indeed
sufficient to ensure the existence of a reconciliation. Also note that, taking
complementary sets, condition (1) is equivalent to the symmetric condition
E2 ⊂ E1 ⇒ P2(E2) 6 P1(E1).

The next result deals with the general case n > 2. The existence of a
reconciliation is characterized in terms of elementary integer-valued measur-
able functions. Consider integer numbers m1 > 1, . . . ,mn > 1, and, for all
1 6 i 6 n, a family of mi pairwise disjoint events E(i)

1 ∈ Fi, . . . , E(i)
mi ∈ Fi,

and a family of mi integer numbers d(i)
1 ∈ Z, . . . , d(i)

mi ∈ Z. Then set

(2) fi =

mi∑
`=1

d
(i)
` · 1E(i)

`

and f =
n∑
i=1

fi.
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Note that each fi is Fi−measurable, and that one has

(3)
∫
fidPi =

mi∑
`=1

d
(i)
` · Pi(E

(i)
` ).

Theorem 1.2. Assume that F1, . . . ,Fn comprise a finite number of events.
Then it is possible to reconcile (Ω,F1,P1), . . . , (Ω,Fn,Pn) if and only if, for
all functions f and f1, . . . , fn of the form given by (2), one has that

(4) f > 0⇒
n∑
i=1

∫
fidPi > 0.

The necessity of condition (4) above is easy to see, for, given a reconcili-
ation P, and a non-negative function f , one must have

0 6
∫
fdP =

n∑
i=1

∫
fidP =

n∑
i=1

∫
fidPi.

As a consequence, the non-trivial part of Theorem 1.2 is the fact that con-
dition (4) is indeed sufficient for the existence of a reconciliation P.

Note that we insisted on giving a formulation in terms of integer-valued
functions (instead of general real-valued functions) since we are interested in
having a combinatorial interpretation of the criterion in terms of comparisons
between probabilities of sets. Indeed, condition (4) in Theorem 1.1 has a very
clear such combinatorial interpretation, and one may hope for an equally
clear criterion in the general case n > 2. Since, in the case n = 2, the
existence of a reconciliation can be checked by looking at a very specific
subset of the conditions appearing in Theorem 1.2 (namely, those involving
m1 = 1, m2 = 1, d(1)

1 = −1, d(2)
1 = 1), a natural question is whether,

in the general case n > 2, it is still possible to characterize the existence
of a reconciliation through a subset of conditions that involve only "small"
integer values. Unfortunately, the following result shows that the answer is
negative.

Theorem 1.3. For all K > 0, there exists a triple of probability spaces
(Ω,F1,P1), (Ω,F2,P2), (Ω,F3,P3), where Fi comprises a finite number of
events for i = 1, 2, 3, such that:
• no reconciliation exists;
• condition (4) is satisfied whenever |d(i)

` | 6 K for all i, `.

Theorem 1.3 shows that, even when n = 3, there is no upper bound on
how large the integer coefficients d(i)

` in (2) have to be in order to check the
existence of a reconciliation. Note that, with K = 1 (and Theorem 1.1),
the theorem also provides an example of a triple of probability spaces among
which every pair admits a reconciliation, while no overall reconciliation exists
for the triple.
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1.1.2. Extension to the infinite case. We now consider the case where the
σ−fields Fi on Ω may comprise an infinite number of events. We start with
a negative result showing that one cannot extend the previous results to such
a general case without additional assumptions.

Theorem 1.4. There exists a pair (Ω,F1,P1), (Ω,F2,P2) such that condi-
tion (1) is satisfied, but for which no reconciliation exists.

The next theorem states that, under a (reasonably mild and general) ad-
ditional assumption on the σ−fields F1, . . . ,Fn, can indeed be extended.

Theorem 1.5. Assume that the σ−fields F1, . . . ,Fn (with n = 2 in the case
of Theorem 1.1) are of the form Fi = σ(Xi), where Xi is a map from Ω to
Rdi (equipped with the Borel σ−field), with di > 1. Moreover, assume that
the set (X1, . . . , Xn)(Ω) is a closed set in Rd1+···+dn. Then the conclusions
of Theorems 1.1 and 1.2 hold. Namely, in the case n = 2, there exists a
reconciliation between P1 and P2 if and only if condition (1) holds, and, in
the general case n > 2, there exists a reconciliation between P1, . . . ,Pn if and
only if condition (4) holds.

The two following corollaries are immediate by-products of the theorem.

Corollary 1.6. The conclusions of Theorems 1.1 and 1.2 hold when the
σ−fields F1, . . . ,Fn are generated by a countable number of atoms.

Corollary 1.7. Let V be a closed set of Rd × Rd and µ, ν two probability
measures on Rd. Then, using transport terminology, there exists a transport
plan π from µ to ν concentrated on V , i.e, a measure π ∈ P(Rd × Rd) with
marginals µ and ν and π(V ) = 1, if and only if for every Borel sets A ⊂ Rd
and B ⊂ Rd

µ(A) 6 ν(B) as soon as (A× Rd) ∩ V ⊂ (Rd ×B) ∩ V.(5)

1.2. Connections with earlier work. Early references bearing directly
on Theorem 1.1 are Fréchet [7] and Dall’Aglio [5] (where an unpublished
result of Berge is also quoted). There, a general result is proved on the
existence of two-dimensional discrete distributions with prescribed marginals
and upper bounds, from which Theorem 1.1 can be derived. Subsequent
work by Kellerer (Satz 3.2 in [9]) in a general framework (finite dimensional
distributions on abstract spaces) can be used to derive Theorem 1.2. Finally,
key ingredients needed to prove Theorem 1.5 can be taken from Theorem
11 in Strassen [14]. We refer to the book [6] for additional references and a
more detailed historical perspective on this body of work.

Here, a step-by-step self-contained approach to the proofs is given. Indeed,
in our specific framework, Theorem 1.2 stems from a rather straightforward
application of Farkas’ Lemma. Theorem 1.1 is then derived from Theorem
1.2 through a simple reduction argument. Finally, Theorem 1.5 is what one
more or less readily obtains by passing to the limit within a sequence of
discrete approximations provided by Theorems 1.1 and 1.2.
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To conclude this section, we would like to emphasize the connections of
Corollary 1.7 (which is in fact a variant of Theorem 11 in [14], and also
related with ) with recent developments in optimal transport theory.

Although it appears a little less obvious, condition (5) is necessary in
Corollary 1.7 for the same reason why (1) is in Theorem 1.1. Its natural
interpretation is not probabilistic, but in terms of transport, as follows. We
recall that π(A × B) represents the mass transported from A to B. The
constraint on the capacity of the transport plan is given by V : no mass can
travel from x to y if (x, y) ∈ V . Gravel located in A with mass µ(A) can be
displaced according to the capacity transport constraint encoded by V only
to the set B0 = proj2((A × R) ∩ V ). The storage size of this (universally
measurable) set is ν(B0). In order for the transport to be manageable, it
has to be larger than µ(A), which is condition (5). Corollary 1.7 states that
under this condition there exists a transport plan that satisfies the capacity
constraint. As for the usual Monge–Kantorovich optimal transport problem,
the goal in constrained versions of the problem is to obtain information on
the minimizers of π 7→

∫∫
cdπ, where c : Rd × Rd is a lower semicontinuous

cost function. In particular, is there a Monge solution, that is in the form
π = (Id⊗ T )#µ ?

We are aware of two works in the transport literature that correspond
to this problem. In [8] the special case of a constraint displacement vector
has been encoded by V = {(x, y) ∈ R2d : y − x ∈

−→
V } where

−→
V ⊂ Rd

is a closed convex set with some additional properties. The authors look
at the shape of optimizers for a quadratic (constraint) cost c(x, y) = |y −
x|21

y−x∈
−→
V

+∞ · 1
y−x/∈

−→
V
. They prove that, provided µ is absolutely con-

tinuous, any solution π∗ of the Monge–Kantorovich transport problem is a
Monge transport plan π∗ = (Id ⊗ T )#µ where T (x) ∈ x +

−→
V , µ−almost

surely, and hence, π∗ is uniquely determined. This occurs under the as-
sumption made that a transport plan π with finite cost does exist, i.e,∫∫

cdπ <∞ for some admissible π. In this respect, condition (5) is namely
required in order for the problem to have finite minimal total cost. Note
that (5) reads in this case ν(A +

−→
V ) > µ(A). The other work is [2] where

−→
V is the unit Euclidean ball B1(0) and c is the so-called relativistic cost
c(x, y) = (1 −

√
1− |y − x|2)1|y−x|61 +∞ · 1|y−x|>1. As c is bounded on

its domain, (5) is a necessary and sufficient condition to have finite total
cost. The authors also introduce ct := c(x/t, y/t) and the critical speed
T = Tµ,ν = inf{t ∈ R+ : the total cost is finite for ct}. Therefore T is also
the minimal t such that ν(A + Bt(0)) > µ(A) for every Borel set A. Let
us finally mention [12, 11] where another Monge-Kantorovich problem un-
der capacity constraint is investigated: a transport plan π is admissible if it
possesses a density h on X×Y ⊂ Rd1+d2 that satisfies 0 < h 6 h̄ for a given
h̄. In this case the authors of [12] cite (p. 575) two functional criteria for
the existence of an admissible transport plan. These are due to Kellerer [9]
and Levin [13]. An equivalent set-based criterion due to Kellerer [10, Satz
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4.2] directly transposes in the continuous settings the (already mentioned)
ones obtained by Fréchet [7] and Dall’Aglio [5] in the discrete setting.

2. Proofs

We start with the proof of Theorem 1.2, which consists merely in an
application of Farkas’ Lemma.

Proof of Theorem 1.2. As already noted after the statement of the theorem,
condition (4) is clearly necessary for the existence of a reconciliation. We
now assume that (4) holds, and prove the existence of a reconciliation.

Denote by H the (finite-dimensional) vector space formed by real-valued
functions f on Ω of the form f = f1 + · · · + fn, where each fi is an
Fi−measurable real-valued function on Ω. Note that condition (4) is as-
sumed to hold for such functions f when each fi is integer-valued. Since we
consider functions on a finite state space, condition (4) in fact holds for any
f in H, as can be seen by approximating each fi by functions with rational
values, which in turn can be written as integer values divided by the g.c.d.
of these values.

Now, for any ω ∈ Ω, denote by ϕω the linear form on H defined by
ϕω(f) = f(ω). On the other hand, denote by θ the linear form on H defined
by θ(f) =

∑n
i=1

∫
fdPi. Condition (4) (extended to all functions in H)

says that, if f ∈ H is such that ϕω(f) > 0 for all ω ∈ Ω, then one has
θ(f) > 0. Farkas’ Lemma then guarantees the existence of a family (tω)ω∈Ω

of non-negative real numbers such that, for all f ∈ H, one has the identity

(6) θ(f) =
∑
ω∈Ω

tω · f(ω).

Applying (6) with e.g. f1 ≡ 1 and f2 = · · · = fn ≡ 0, we see that the non-
negative numbers (tω)ω∈Ω sum up to 1, so that we can define P({ω}) = tω.
Given Ai ∈ Fi, we can apply (6) with fi = 1Ai and fj ≡ 0 for j 6= i, and we
deduce that P(Ai) = Pi(Ai). �

We now prove Theorem 1.1 from Theorem 1.2, through a suitable reduc-
tion argument.

Proof of Theorem 1.1. As already noted after the statement of the theorem,
condition (1) is clearly necessary for the existence of a reconciliation. We now
assume that (1) holds, and prove the existence of a reconciliation through
Theorem 1.2.

Without loss of generality, we start with a function f of the form f =
f1 + f2, with f1 =

∑
i λi1Ai and f2 = −

∑
j µj1Bj , where the λi and µj are

in Z, and where the (Ai)i (resp. (Bj)j) is a finite family of events in F1

(resp. F2) that forms a finite partition of Ω. In the sequel, the λi and µj
are called the coefficients of f .

Our goal is to establish condition (4) so as to apply Theorem 1.2. So we
now have to prove that, if f > 0, then

∑
i λiP1(Ai)−

∑
j µjP2(Bj) > 0.
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Step 1: We may assume that f has coefficients in N: Adding to f the function
0 = C − C = C(

∑
i 1Ai) − C(

∑
j 1Bj ) where C = maxi,j(|λi|, |µj |), we see

that ∑
i

(λi + C)1Ai −
∑
j

(µj + C)1Bj

has non-negative coefficients λ′i = λi + C and µ′j = µj + C, while keeping∑
λ′iP1(Ai) +

∑
µ′jP2(Bj) =

∑
λiP1(Ai) +

∑
µjP2(Bj), since

∑
CP1(Ai)−∑

CP2(Bj) = 0.
Step 2: We may assume that f has coefficients in {0, 1}: Consider f such that
f > 0, and, given Step 1, assume that the coefficients in f satisfy λi, µj ∈ N.
We set λ′i = max(λi − 1, 0) and µ′j = max(µj − 1, 0), and write f = g + h,
with g =

∑
λ′i1Ai −

∑
µ′j1Bj and h =

∑
(λi − λ′i)1Ai −

∑
(µj − µ′j)1Bj .

Since
∑
λi1Ai 6

∑
µj1Bj , we must have, for every (i, j) with Ai ∩ Bj 6= ∅,

the fact that λi 6 µj , and therefore that λ′i 6 µ
′
j and λi − λ′i 6 µj − µ′j . As

a consequence, we have g > 0 and h > 0, and g and h have non-negative
integer coefficients. Moreover, unless they are already equal to 0 or 1, the
coefficients of g and h are strictly smaller than the corresponding coefficients
of f . Indeed, if λi > 2, one has λ′i < λi and λi − λ′i < λi, and similarly for
µj . As a consequence, after a finite number of iterations, we can write f as
a sum of non-negative functions with integer coefficients in {0, 1}.
Conclusion: For a function f > 0 with coefficients in {0, 1}, the difference∑

i λiP1(Ai) −
∑

j µjP2(Bj) is of the form P1(E1) − P2(E2) with E2 ⊂ E1,
so that condition (1) implies the fact that

∑
i λiP1(Ai)−

∑
j µjP2(Bj) > 0.

�

We now prove Theorem 1.3, which consists in building an example with
no reconciliation, but for which any exception to condition (4) must involve
at least one large coefficient.

Proof of Theorem 1.3. Given an integer number n > 2, we define a sam-
ple space Ω with 3n distinct elements Ω = {a1, . . . , an, b1, . . . , bn, c1, . . . , cn}.
The σ field F1 containsA1 = {a1, c1}, . . . , An = {an, cn} andA0 = {b1, . . . , bn}.
The σ field F2 containsB1 = {b1, c1}, . . . , Bn = {bn, cn} andB0 = {a1, . . . , an}.
Finally, the σ−field F3 contains C1 = {a1, b1}, Cn+1 = {cn}, and for every
k ∈ {2, . . . , n} the set Ck = {ak, bk, ck−1}. For i = 1, 2, 3, the probability
measure Pi gives the same mass to each of the n + 1 events in Fi, namely
1/n+ 1. See Figure 2 for a visual presentation.

There exists no reconciliation between P1,P2 and P3: Observe that, by con-
struction, we have the inequality:

n+1∑
k=1

2k−11Ck
6

n∑
k=1

2k−1(1Ak
+ 1Bk

).
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A0

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

B0

C1

C2

C3

C4

C5

C6

a1

b1 c1

c5

a5

b5

Figure 1. The set Ω with (Fi)i∈{1,2,3}.

As a consequence, if a reconciliation P existed, taking the expectation with
respect to P in the above equation, we would have

1

n+ 1
×

(
n∑
k=0

2k

)
6

1

n+ 1
×

(
2
n−1∑
k=0

2k

)
,

a contradiction.

Any exception to condition (4) has at least one large coefficient: consider an
exception to condition (4) of the following form: (λi)06i6n, (µj)06j6n and
(νk)16k6n+1 are integer coefficients such that

(7)
∑

λi1Ai +
∑

µj1Bj >
∑

νk1Ck
,

but

(8)
∑

λi

(
1

n+ 1

)
+
∑

µj

(
1

n+ 1

)
<
∑

νk

(
1

n+ 1

)
.

Focusing on (7) at points c1, c2, . . . , cn we see that νk+1 6 λk + µk for k =
1, . . . , n. Therefore

n∑
k=1

λk + µk >
n∑
k=1

νk+1.

In view of (8), the remaining coefficients λ0, µ0 and ν1 have to satisfy the
inequality λ0 +µ0 < ν1, and, moreover, for every k = 1, . . . , n, we must have
λk +µk − νk+1 < δ := ν1− (λ0 +µ0). On the other hand, from (7) at points
a1, . . . , an and b1, . . . , bn we find that νk 6 λk + µ0 and νk 6 µk + λ0.
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Now, for every k ∈ {1, . . . , n} we find that

νk+1 > λk + µk − δ
> (νk − λ0) + (νk − µ0)− δ
> 2νk − ν1,

from which we deduce that

(9) νk+1 − ν1 > 2(νk − ν1).

Using the fact that ν2 is an integer, we first deduce that ν2 > ν1 + 1. Then,
iterating the inequality, we obtain that νn+1−ν1 > 2n−1. As a consequence,
we must have either |ν1| > 2n−2 or |νn+1| > 2n−2. The conclusion of the
theorem is thus proved, by choosing an n such that 2n−2 > K. �

We now prove Theorem 1.4, which shows that Theorem 1.1 does not hold
in the general (infinite) case, at least without additional assumptions.

Proof of Theorem 1.4. Take Ω = {(x1, x2) ∈ R2; 0 < x1 < x2 < 1}, and let
X1 and X2 denote the coordinate maps on Ω (so that Xi(x1, x2) = xi for
i = 1, 2). Then define the σ−fields Fi = σ(Xi) for i = 1, 2. Finally, let Pi be
the probability on (Ω,Fi) uniquely characterized by the fact that Xi follows
the uniform distribution on ]0, 1[.

We first check that (Ω,F1,P1) and (Ω,F2,P2) satisfy condition (1). To
this end, consider E1 ∈ F1 and E2 ∈ F2 such that E1 ⊂ E2. By definition
of F1, there exists a Borel set B1 ⊂]0, 1[ such that E1 = {(x1, x2); x1 ∈
B1, x2 ∈]x1, 1[}. Similarly, there exists a Borel set B2 ⊂]0, 1[ such that E2 =
{(x1, x2); x2 ∈ B2, x1 ∈]0, x2[}. From the fact that E1 ⊂ E2, one deduces
that B2 must contain the set ]0, supB1[. Since X1 and X2 both follow the
uniform distribution on ]0, 1[, we deduce that P1(E1) = P1(X1 ∈ B1) 6
P1(X1 ∈]0, supB1]) = P2(X2 ∈]0, supB1]) = P2(X2 ∈]0, supB1[) 6 P2(E2).
We conclude that (Ω,F1,P1) and (Ω,F2,P2) satisfy condition (1).

Let us know prove by contradiction that there exists no reconciliation
between (Ω,F1,P1) and (Ω,F2,P2). If P where such a reconciliation, both
X1 and X2 would follow the uniform distribution on ]0, 1[ when viewed as
random variables on (Ω, σ(F1,F2),P), so that we would have:

(10)
∫

Ω
X1(ω)dP(ω) =

∫
Ω
X2(ω)dP(ω) = 1/2.

On the other hand, one has X1 6 X2 by definition of Ω, so that (10) implies
that P(X1 = X2) = 1. Since, by definition of Ω again, one has X1(ω) <
X2(ω) for all ω ∈ Ω, we would also have P(X1 = X2) = 0, a contradiction.

�

We now prove Theorem 1.5, which gives one possible extension of Theo-
rems 1.1 and 1.2 beyond the finite discrete case. The proof strategy simply
consists in taking a limit in a sequence of discrete approximations whose
existence is provided by the previous results.
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Proof of Theorem 1.5. We give the proof for Theorem 1.1 only, the proof for
Theorem 1.2 being competely similar. Let V = (X1, X2)(Ω), and assume
that, within the assumptions of the theorem, P1 and P2 satisfy (1). For
i = 1, 2, let P̃i denote the probability distribution of Xi viewed as a real-
valued random variable on (Ω,Fi,Pi). Denote also X̃1 and X̃2 the canonical
coordinate maps on Rd1 × Rd2 .

We first claim that, to prove the theorem, it is enough to prove that there
exists a probability measure P̃ on Rd1+d2 (equipped with the Borel σ−field)
such that :
• P̃(V ) = 1;
• for i = 1, 2, P̃(X̃i ∈ B) = P̃i(B) for every Borel set B ⊂ Rdi .

Indeed, consider such a probability measure P̃. For anyD ∈ σ(X1, X2), there
exists a Borel set C ⊂ V such thatD = {(X1, X2) ∈ C}. We thus define P on
F = σ(X1, X2) by letting P({(X1, X2) ∈ C}) = P̃(C), for every Borel subset
C ⊂ V . Since V = (X1, X2)(Ω), this leads to a well-defined probability
measure on F . Moreover, given Di ∈ σ(Xi), one can write Di = {Xi ∈ Ci},
with Ci a Borel set in Rdi , and one then has P(Di) = P(Xi ∈ Ci) = P̃({X̃i ∈
Ci}∩V ) = P̃(X̃i ∈ Ci) = P̃i(Ci) = Pi(Xi ∈ Ci) = Pi(Di), so that P provides
a reconciliation between P1 and P2.

We now establish the existence of the required probability measure P̃. Let
us consider a sequence (an)n∈N of pairwise distinct real numbers, such that
{an;n ∈ N} is a dense subset in R. Given n > 0, denote by b(1)

n < · · · < b
(n)
n

the ordered n−tuple obtained by ordering the values a1, . . . , an. Then define
the intervals I(0)

n =] − ∞, b(1)
n ], I(k)

n =]b
(k)
n , b

(k+1)
n ] for 1 6 k 6 n − 1, and

I
(n)
n =]b

(n)
n ,+∞[. Given a d−tuple ` = (`1, . . . , `d) ∈ {0, . . . , n}d, let I

(`)
n =

I
(`1)
n × · · · × I(`d)

n . Given such a a d1−tuple k1 and a d2−tuple k2, we denote
by (k1, k2) the (d1 + d2)−tuple obtained by concatenating k1 and k2.

Let nowKn denote the subset formed by the pairs (k1, k2) ∈ {0, . . . , n}d1×
{0, . . . , n}d2 for which I

(k1,k2)
n ∩ V 6= ∅. Finally, for k ∈ {0, . . . , n}di , let

p
(k)
i,n = Pi(Xi ∈ I(ki)

n ).
Assumption (1) on P1,P2 and Theorem 1.1 show the existence of a discrete

probability (p
(k1,k2)
n )(k1,k2)∈Kn

on the set Kn ⊂ {0, . . . , n}d1 × {0, . . . , n}d2

whose marginals are (p
(k)
1,n)k∈{0,...,n}d1 and (p

(k)
2,n)k∈{0,...,n}d1 respectively. Now,

for (k1, k2) ∈ K, let us denote by x(k1,k2)
n an arbitrary element in I(k1,k2)

n ∩V ,
and define a probability measure on Rd1+d2 by

P̃n =
∑

(k1,k2)∈Kn

p(k1,k2)
n · δ

x
(k1,k2)
n

.

We note that P̃n(V ) = 1, and that, for i = 1, 2, and any k ∈ {0, . . . , n}di ,
one has that P̃n(X̃i ∈ I

(k)
n ) = p

(k)
i,n = Pi(Xi ∈ I

(k)
n ) = P̃i(I

(k)
n ). Moreover,

by construction, for all m > n, every set I(k)
m , with k ∈ {0, . . . , n}di , is a
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disjoint (finite) union of sets of the form I
(`)
n , with ` ∈ {0, . . . , n}di , so that

P̃m(X̃i ∈ I(k)
n ) = P̃n(X̃i ∈ I(k)

n ) = P̃i(I
(k)
n ).

Let us now check that the sequence of probability measures (P̃n)n>0 is
tight. By density, we must have that limn→+∞ b

(1)
n = −∞ and limn→+∞ b

(n)
n =

+∞. As a consequence, for i = 1, 2, and 1 6 j 6 di, one has that
limn→+∞ P̃i

(
$−1
j (]−∞, b(1)

n ])
)

= 0 and limn→+∞ P̃i
(
$−1
j (]b

(n)
n ,+∞[)

)
=

0, where $j : Rdi → R denotes the projection onto the j−th coordinate.
Moreover, the sets $−1

j (] −∞, b(1)
n ]) and $−1

j (]b
(n)
n ,+∞[) can be written

as disjoint (finite) unions of sets of the form I
(`)
n , with ` ∈ {0, . . . , n}di , so

that

P̃m
(
$j(X̃i) ∈]−∞, b(1)

n ]∪]b(n)
n ,+∞[)

)
= P̃n

(
$j(X̃i) ∈]−∞, b(1)

n ]∪]b(n)
n ,+∞[

)
= P̃i

(
$−1
j (]−∞, b(1)

n ]∪]b(n)
n ,+∞[)

)
.

We deduce that, for i = 1, 2, and 1 6 j 6 di, one has

lim
n→+∞

sup
m>n

P̃m
(
$j(X̃i) ∈]−∞, b(1)

n ]∪]b(n)
n ,+∞[

)
= 0,

which is enough to establish the tightness of the sequence (P̃n)n>0.
We now invoke Prohorov’s theorem to deduce the existence of a subse-

quence (P̃nr)r>0 which converges in distribution to a probability P̃ on R2.
Since P̃n(V ) = 1 for all n and V is a closed set, we deduce that P̃(V ) = 1.

To conclude the proof, it remains to prove that P̃(X̃i ∈ B) = P̃i(B) for every
Borel set B ⊂ R. First note that, for i = 1, 2, the sequence of probability
distributions P̃nr(X̃i ∈ ·) converges weakly to the limit P̃(X̃i ∈ ·). On the
other hand, for any n > 0 and k ∈ {0, . . . , n}di , we have, for all m > n,
the identity P̃m(X̃i ∈ I

(k)
n ) = P̃i(I

(k)
n ). As an immediate consequence, for

any n > 0, we have that limr→+∞ P̃nr(X̃i ∈ I(k)
n ) = P̃i(I

(k)
n ). Moreover, by

density, every open set in Rdi can be written as a finite or countable union
of sets of the form I

(k)
n , and the intersection of a finite number of such sets

is still of the same form. By [3, Theorem 2.2, page 17], we deduce that the
sequence of probability distributions P̃nr(X̃i ∈ ·) converges weakly to the
limit P̃i(·). We deduce that the two weak limits P̃(X̃i ∈ ·) and P̃i(·) are
identical. �
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