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Abstract. The (left-)curtain coupling, introduced by Beiglböck and the author is an extreme point of the set of “martingale”
couplings between two real probability measures in convex order. It enjoys remarkable properties with respect to order relations and
a minimisation problem inspired by the theory of optimal transport. An explicit representation and a number of further noteworthy
attributes have recently been established by Henry-Labordère and Touzi. In the present paper we prove that the curtain coupling
depends continuously on the prescribed marginals and quantify this with Lipschitz estimates.

Résumé. Le couplage rideau (gauche), introduit par Beiglböck et Juillet est un point extrémal de l’ensemble des couplages
« martingale » entre deux mesures de probabilité réelles prises dans l’ordre convexe. Ce couplage possède des propriétés re-
marquables quant aux relations d’ordre entre mesures d’une part, et par rapport à un problème de minimisation issu de la théorie du
transport optimal d’autre part. Une représentation explicite a été récemment mise en évidence par Henry-Labordère et Touzi. Nous
démontrons dans cet article que le couplage rideau dépend continument des mesures marginales prescrites et nous quantifions cette
dépendance à l’aide d’inégalités lipschitziennes.
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0. Introduction

There are at least two standard methods to couple real random variables, that is to obtain a joint law. The first one is
the product (or independent coupling) (μ, ν) �→ μ ⊗ ν, and the other is the quantile coupling (μ, ν) �→ Law(Gμ,Gν)

where Gμ, Gν are the generalised inverse of the cumulative functions of μ, ν (also called quantile functions, see
Section 1.2). One can easily convince oneself that both operators are continuous in the weak topology. In this paper we
are interested in the continuity of another method, namely the left-curtain coupling πlc = Curt(μ, ν). It was recently
introduced in [2] by Beiglböck and the author3 and further studied by Henry-Labordère and Touzi [5]. As defined
in [2], πlc is the measure with marginals μ and ν such that for every x ∈ R, the two marginals of πlc|]−∞,x]×R

are μ]−∞,x] and the so-called shadow (see Definition 2.1) of the latter measure in ν. We advocated that under the
additional constraint E(Y |X) = X on Law(X,Y ) (that can be satisfied neither by Law(X) ⊗ Law(Y ) nor by the
quantile coupling, except in degenerate cases), πlc can be considered as the most natural coupling of μ = Law(X)

1The preprint version of our paper has reference arXiv:1407.8009. The last part of this preprint will appear separately as “Martingales associated
to peacocks by using the curtain coupling.”
2The author is partially supported by the “Programme ANR ProbaGeo” (ANR-09-BLAN-0364) and the “Programme ANR JCJC GMT” (ANR
2011 JS01 011 01).
3Right-curtain couplings can be defined symmetrically and the corresponding result can be deduced easily. In this paper curtain coupling and
monotone coupling indicate left-curtain couplings and left-monotone couplings respectively.
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and ν = Law(Y ). Indeed it is distinct from the quantile coupling but can be considered as its natural counterpart
under the martingale constraint. Moreover it enjoys remarkable optimality properties with respect to the martingale
variant of the usual transport problem on R: the martingale transport problem which was introduced in the context
of mathematical finance in [1,4,7]. See Proposition 2.8 for more details on πlc. Our main result is that the operator
Curt : (μ, ν) �→ πlc is continuous.

Main theorem. The mapping Curt is continuous on its domain (Theorem 2.16). More precisely if all the measures
have the same mass, then

Z
(
Curt(μ, ν),Curt

(
μ′, ν′)) ≤ WR

1(
μ,μ′) + 2WR

1(
ν, ν′),

where WR
d

is the Kantorovich distance of measures in R
d (see the beginning of Section 1) and Z the semimetric

defined in Section 2.3.2 (Corollary 2.32 of Theorem 2.31).
Moreover a similar statement with WR

2
in place of Z fails in the sense that there exist sequences (μn)n, (μ′

n)n and
(νn)n, (ν′

n)n such that
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n→∞WR
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Curt(μn, νn),Curt

(
μ′

n, ν
′
n

))
/max

(
WR

1(
μn,μ

′
n

)
,WR

1(
νn, ν

′
n

)) = +∞

(Example 2.37).

The paper is organised in two sections. In the first part we introduce several notions related to positive measures on
R that will be used in the second part. In particular we introduce the convex order 	C , the stochastic order 	sto and the
usual order 	+. The domain of Curt is described by Strassen’s theorem [10] in terms of 	C : it is the set of pairs (μ, ν)

satisfying μ 	C ν. Hence in terms of mass transportation, μ 	C ν denotes a dilation; for every x ∈R, the mass μ(dx)

at point x can be spread in both directions in such a way that for any x the barycenter of the mass transported from
x is still x. The distribution after the dilation is ν. In the same spirit let us see how one can interpret the other orders:
the relation μ 	sto ν means that part of the mass of μ can be transported in the direction of +∞ in order to build ν.
The relation μ 	+ ν means that some mass is created, i.e. ν = μ + μ′ where μ′ is a positive measure. We investigate
the interplay between these three orders and four other more or less classical orders, defined in Definition 1.1, on the
space of positive measures with finite first moments: the extended order 	C,+ (that is the same as 	+,C ), the orders
	+,sto (or 	sto,+) and 	C,sto (or 	sto,C ) and finally 	C,+,sto (for which the three indices can also be permuted). We
reproduce Theorem 1.7 that may be considered the main result of Section 1.

Theorem. For any sequence (μi)i=0,...,n (with n = 2 or 3) satisfying the relations μi−1 	ri μi for i = 1, . . . , n one
has μ0 	r1,...,rn μn.

Conversely if μ0 	r1,...,rn μn one can find a sequence (μi)i=0,...,n such that μi−1 	ri μi for every i ≥ 1.

We start Section 2 with the definitions of the shadow projection (Definition 2.1) and the left-curtain coupling
(Definition 2.6), and recall their main properties. We have already stated in Main Theorem a compilation of the results
of this section. Let us insist on two ingredients.

The key theorem of this part is Theorem 2.31. It states that the shadow projection (μ, ν) �→ Sν(μ) is a Lipschitzian
map for the Kantorovich metric WR

1
. Corollary 2.32 is a only a reformulation of this result for the left-curtain coupling

Curt. One important preliminary result for Theorem 2.31 is Lemma 2.33, on the monotonicity of the shadow projection
with respect to the stochastic order.

The other ingredient is a new modified support spt∗(π), which might be the most important definition of this paper.
It leads to a second proof of the continuity of Curt. For a positive measure π on R

2, we introduce it in the following
way: let A be the set of x ∈ R such that π(]−∞, x[× ]x,∞[) = 0, and A− ⊆ A the subset of points that are isolated
on the right in A. We set

spt∗(π) = (
spt(π) \ (

A− ×R
)) ∪

⋃
μ(x)>0

{x} × sptπx ⊆R
2,
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where μ is the first marginal of π and (πx)x∈R is some μ-almost surely unique family of conditional probability laws
of π (notice that spt∗(π) does not depend on the particular choice). For instance π = 1/2(δ0 + λ[0,1])2 has reduced
support {(0,0)} ∪ (]0,1] × [0,1]) and support [0,1]2. The reduced support simplifies the definition of left-monotone
couplings. According to a result in [2] (Proposition 2.8 in the present paper) this is one of three equivalent proper-
ties for couplings: optimal, left-monotone or left-curtain. With Proposition 2.14, it becomes possible to determine
whether a coupling π is left-monotone only by testing the triples of points in (spt∗(π))3, while the original definition
involves some undefined � ⊆ R

2 of full π -measure. In particular, as explained in Example 2.11, the property to be
checked for left-monotonicity may fail for triples of � = spt(π) but hold for � = spt∗(π). The introduction of spt∗
allows to extrapolate the usual optimal transport proof of the continuity of monotone couplings [13, Theorem 5.20]
(Theorem 2.16).

1. Reminders about the stochastic and convex orders

We consider the space M of positive measures on R with finite first moments. The subspace of probability measures
with finite expectations is denoted by P . For μ,ν ∈ M, the Kantorovich distance defined by

W(μ,ν) = sup
f ∈Lip(1)

∣∣∣∣
∫

f dμ −
∫

f dν

∣∣∣∣ (1)

endows (P,W) with T1, the usual topology for probability measures with finite first moments. In the definition, the
supremum is taken among all 1-Lipschitzian functions f : R → R. We also consider W with the same definition on
the subspace mP = {μ ∈M|μ(R) = m} ⊆M of measures of mass m.

According to the Kantorovich duality theorem, an alternative definition in the case μ,ν ∈ P is

inf
(�,X,Y )

E
(|Y − X|), (2)

where X,Y : (�,F,P) → R are random variables with marginals μ and ν. The infimum is taken among all joint laws
(X,Y ), the probability space (�,F,P) being part of the minimisation problem. Note that without loss of generality
(�,F,P) can be assumed to be ([0,1],B, λ) where λ is the Lebesgue measure and B the σ -algebra of Borel sets on
[0,1].

A special choice of 1-Lipschitzian function is the function ft : x ∈ R → |x − t | ∈ R. Therefore if μn → μ in M,
the sequence of functions uμn : t �→ ∫

ft (x)dμn(x) pointwise converges to uμ. The converse statement also holds
if all the measures have the same mass and barycenter (see [2, Proposition 4.2] or directly [6, Proposition 2.3]). For
every μ ∈ M, the function uμ is usually called the potential function of μ.

A measure π on R
2 with marginals μ and ν is called a transport plan from μ to μ or a coupling of μ and ν. Let

	(μ,ν) be the space of transport plans of mass 1. The subspace 	M(μ,ν) is defined as follows

	M(μ,ν) = {
π = Law(X,Y ) ∈ 	(μ,ν),E(Y |X) = X

}
,

where the constraint E(Y |X) = X means: E(Y |X = x) = x for μ-almost every x ∈R.
We need to define WR

2
, the Kantorovich metric on R

2 in order to compare transport plans. It is defined identically
to the 1-dimensional version in (1) and (2), except that | · | is replaced with a norm ‖ · ‖ of R2. Indeed the choice
of a norm is required in the definition of the 1-Lipschitzian functions in (1) and more directly in (2). For d = 1,2,
we denote by T1(R

d) the topology induced by WR
d

and Tcb(R
d) the usual weak topology. The letters “cb” stand for

continuous bounded functions because they define the weak topology while the former topology is induced by the
continuous functions growing at most linearly at infinity.

1.1. Seven partial orders on M

We introduce seven partial orders on M, investigate their interdependencies, and explain their meanings in terms of
couplings. These definitions will be useful for a synthetic formulation in Section 2, like for instance in Lemma 2.27.
The results of this section continue the extension of the convex order started with the extended order in [2] to other
cones of functions. They are used in Section 2 but may also be interesting for their own sake. Even if the results
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like Theorem 1.7 and Corollary 1.8 may sound classical and the proofs are easy, they are to our knowledge the first
appearance in the mathematical literature.

Definition 1.1. The letter E is a variable for a set of real functions growing at most linearly at −∞ and +∞. We
introduce the set of non-negative functions E+, the set of non-increasing functions Esto and the set of convex functions
EC , all three are restricted to functions with the growing constraint. For μ,ν ∈M we introduce the property P(E).

P(E) : ∀φ ∈ E,

∫
φ dμ ≤

∫
φ dν.

For μ,ν ∈M,

• if P(E+) holds, we write μ 	+ ν (usual order),
• if P(Esto) holds, we write μ 	sto ν (stochastic order or first order stochastic dominance),
• if P(EC) holds, we write μ 	C ν (convex order, Choquet order or second order stochastic dominance),
• if P(EC ∩ E+) holds, we write μ 	C,+ ν,
• if P(E+ ∩ Esto) holds, we write μ 	+,sto ν,
• if P(EC ∩ Esto) holds, we write μ 	C,sto ν,
• if P(EC ∩ E+ ∩ Esto) holds, we write μ 	C,+,sto ν.

Remark 1.2 (Usual notations). The usual notation for μ 	+ ν is μ ≤ ν. In [11],
D≤ is the notation for the stochastic

order 	sto. In [8], the author simply denotes 	C,sto by ≺. In [2], Beiglböck and the author introduced the extended
order 	E . The latter is the same as 	C,+ in this paper.

1.2. Complements on the stochastic order

Recall that the Lebesgue measure is denoted by λ. For a positive measure ν, we note Fν , the cumulative distribution
function and Gν , the quantile function. Recall that Gν(t) = infx∈R{Fν(x) ≥ t}. This function can be seen as a general
inverse of Fν . It is left-continuous and defined on [0, ν(R)]. Recall also ν = (Gν)#λ|[0,ν(R)], which will be used
extensively in this paper.

The following standard proposition can for instance be found in [11, Theorem 3.1]. See also the introduction of
Section 1.3. The proof makes use of the quantile functions.

Proposition 1.3. For μ,ν ∈ P , the relation μ 	sto ν holds, if and only if there exists a pair of random variables
(X,Y ) on a probability space (�,F,P) with marginals μ and ν, such that X ≤ Y , P-almost surely.

We can actually choose P = λ[0,1], X = Gμ and Y = Gν . Furthermore, note that with this representation the pair
(X,Y ) gives the minimal value in (2). Indeed the bound |E(Y )−E(X)| ≤ E(|Y −X|) is always satisfied but if X ≤ Y

we also have E(|Y − X|) = E(Y ) −E(X). Actually, we have more generally.

Lemma 1.4. Let μ, ν be in P . Then the coupling (Gμ,Gν) defined on � = ([0,1],B, λ) is optimal in the definition
(2) of W(μ,ν). More generally if μ, ν have mass m �= 1 we also have

W(μ,ν) =
∫

|Gν − Gμ|dλ[0,m] = ‖Gν − Gμ‖1.

Moreover if μ 	sto ν,

W(μ,ν) =
∫ m

0
(Gν − Gμ)dλ = m

(
1

m

∫
x dμ − 1

m

∫
x dν

)
.

Let us define the rightmost and leftmost measure of mass α smaller that ν. Denoting the mass of ν by m and
assuming α ≤ m, we consider the set S = {μ ∈ M|μ(R) = α and μ 	+ ν}. Let us prove that for any μ ∈ S, we have
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μ 	sto να where να denotes (Gν)#λ|[m−α,m]. Let μ be such a measure and ϕ : R → R a non-decreasing function,
integrable for the elements of M. The measure να admits a density with respect to ν that is 0 on ]−∞,Gν(m − α)[
and 1 on ]Gν(m−α),+∞[. The density of μ with respect to ν is a function with values in [0,1]. Hence μ−(μ∧να) is
concentrated on ]−∞,Gν(m−α)] and να − (μ∧ να) is concentrated on [Gν(m−α),∞[. As Gν is a non-decreasing
function and the mass of both μ and να is α, we obtain∫

ϕ d(μ − μ ∧ να) ≤ [
α − (μ ∧ να)(R)

] × ϕ
(
Gν(m − α)

) ≤
∫

ϕ d(να − μ ∧ να).

Adding
∫

ϕ d(μ∧ να) we obtain
∫

ϕ dμ ≤ ∫
ϕ dν. The measure να is the rightmost measure of mass α smaller than ν.

Symmetrically (Gν)#λ|[0,α] is the leftmost measure.

1.3. Complements on the convex order

In [10, Theorem 8], Strassen established a statement on the marginals of k-dimensional martingales indexed on N.
For our purposes, we restrict the statement to 1-dimensional martingales with one time-step. This result is related
to the convex order 	C in the same way as Proposition 1.3 is associated with 	sto. Actually, in particular for more
general ordered spaces than R, Proposition 1.3 is widely referred to as Strassen’s theorem on stochastic dominance.
The theorem is attributed to Strassen because of [10]. However, the statement of this result in the paper by Strassen
is very elusive. It corresponds to two lines on page 438 after the proof of Theorem 11. See a paper by Lindvall [9],
where a proof relying on Theorem 7 by Strassen is restituted with all the details. Therefore, we prefer to reserve the
name Strassen’s theorem for the domination in convex order and we later call similar results, like Proposition 1.3,
Strassen-type theorems.

Proposition 1.5 (Theorem of Strassen 1). For μ,ν ∈ P , the relation μ 	C ν holds if and only if there exists a pair of
random variables (X,Y ) on a probability space (�,F,P) with marginals μ and ν, such that E(Y |X) = X, P-almost
surely.

In the same article [10, Theorem 9] Strassen states a result on submartingales indexed on two times.

Proposition 1.6 (Theorem of Strassen 2). For μ,ν ∈ P , the relation μ 	C,sto ν holds if and only if there exists a
pair of random variables (X,Z) on a probability space (�,F,P) with marginals μ and ν, such that E(Z|X) ≥ X,
P-almost surely.

Note that if we introduce Y = E(Z|X), one has μ 	sto Law(Y ) and Law(Y ) 	C ν. This kind of decomposition will
be investigated in the next section.

1.4. Strassen-type theorems

Before we state Theorem 1.7, let us clarify a point of notation. One may permute the subscripts of 	 without changing
the meaning of the partial orders. For instance 	+,sto,C does not appear in Definition 1.1 but it denotes the same order
as 	C,+,sto. More than one notation for the same object seems useless but the arrangement of the indices makes sense
in the following theorem.

Theorem 1.7 (Chain of relations). All the relations of Definition 1.1 are antisymmetric and transitive, making them
partial orders.

Moreover, for any sequence (μi)i=0,...,n (with n = 2 or 3) satisfying the relations μi−1 	ri μi for i = 1, . . . , n one
has μ0 	r1,...,rn μn.

Conversely if μ0 	r1,...,rn μn one can find a sequence (μi)i=0,...,n such that μi−1 	ri μi for every i ≥ 1.

Proof. 1. The transitivity is obvious. For the antisymmetry, it is enough to prove that 	C,+,sto is antisymmetric. Let
μ and ν satisfy μ 	C,+,sto ν and ν 	C,+,sto μ. Hence integrating with respect to μ or ν provides the same value for
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any function that can be written in all three forms – (i) the difference of two non-negative functions, (ii) the difference
of two non-decreasing functions, (iii) the difference of two convex functions. All the three spaces are restricted to
functions growing at most linearly at ±∞. Continuous piecewise affine functions with finitely many pieces satisfy the
three conditions. Thus μ = ν.

2. The first implication is obvious, the converse statement is not. We have to prove it for twelve different partial
orders. For 	C,+ (see Remark 1.2) we simply quote [2, Proposition 4.4]. From this, we can easily deduce the statement
for 	+,C . We consider μ0 	+,C μ1. As the order is the same as 	C,+, we can find μ1 with μ0 	C μ1 and μ1 	+ μ2.
We set μ′

1 = μ0 + (μ2 − μ1). As μ2 − μ1 is a positive measure one has μ0 	+ μ′
1. Let ϕ be a convex function.

Therefore∫
ϕ dμ′

1 =
∫

ϕ dμ0 +
∫

ϕ d(μ2 − μ1)

≤
∫

ϕ dμ1 +
∫

ϕ d(μ2 − μ1) ≤
∫

ϕ dμ2,

which means μ′
1 	C μ2. The last argument can be used for stating the decomposition of 	+,C,sto and 	C,+,sto pro-

vided we can prove it for 	C,sto,+. The place of the index “+” does not matter. Similarly the decomposition of 	+,sto,C

and 	sto,+,C will be a corollary of the property for 	sto,C,+. In the same way 	+,sto reduces to the study of 	+,sto.
3. We prove here the two wanted decompositions of μ 	C,sto ν. For probability measures, the Strassen theorem

(Proposition 1.6) states that there exists (X,Z) with Law(X) = μ, Law(Z) = ν and Y := E(Z|X) ≥ X. For μ1 defined
as the law of Y and μ′

1 as the law of Y ′ := Z − (Y − X) we have μ = μ0 	sto μ1 	C μ2 = ν and μ = μ0 	C μ′
1 	sto

μ2 = ν. If μ,ν are not probability measures, they must have the same mass. Indeed, every constant function is element
of EC ∩ Esto. One can easily obtain the statement by normalising the measures.

4. We are left with 	sto,+, 	sto,C,+ and 	C,sto,+. Having in mind the possibility to transpose “C” and “sto”
proved in the last paragraph, it is sufficient to consider μ 	sto,+ ν and μ 	sto,C,+ ν. For that purpose we consider ν′ =
(Gν)#λ|[ν(R)−μ(R),ν(R)]. Recall that it is the rightmost measure of mass μ(R) smaller than ν introduced in Section 1.2.
Of course ν′ 	+ ν. We now prove μ 	sto ν′ and μ 	sto,C ν′ respectively. Let ϕ ∈ E with E = Esto or E = Esto ∩
EC respectively. Because of the dominated convergence theorem, we can assume without loss of generality that
ϕ is bounded from below. We denote Gν(ν(R) − μ(R)) by x ∈ [−∞,+∞[ so that ϕ − ϕ(x) is non-negative on
]x,+∞[. For simplicity, one considers that μ is a probability measure. By applying μ ≤sto,+ ν or μ ≤sto,C,+ ν for
(ϕ − ϕ(x))χ[x,+∞[ respectively, one obtains∫

ϕ dμ = ϕ(x) +
∫ [

ϕ − ϕ(x)
]
χ[x,+∞[ dμ

≤ ϕ(x) +
∫ [

ϕ − ϕ(x)
]
χ[x,+∞[ dν =

∫
ϕ dν′.

Hence μ 	sto ν′ and μ 	sto,C ν′ respectively. For the latter we recall point 3 so that we have μ = μ0 	sto μ1 	C μ2 =
ν′ and μ2 	+ μ3 = ν for some intermediate measure μ1. �

Theorem 1.7 opens the door for a translation of all the partial orders of Definition 1.1 in terms of couplings. For
this purpose we use what is known on 	sto and 	C (Proposition 1.3 and Proposition 1.5) together with the following
characterisation: if ν ∈ P then μ 	+ ν if and only if there exists a random variable Y defined on a probability space
(�,F,P), with Law(Y ) = ν and an event A such that μ(R) = P(A) and Law(Y |A) = μ(R)−1μ. The statement also
requires the composition of joint laws, called gluing lemma in [13]. As an example let us reprove the converse state-
ment of Proposition 1.6. We start with μ0,μ2 ∈ P satisfying μ0 	C,sto μ2. With Theorem 1.7, we find μ1 satisfying
μ0 	C μ1 and μ1 	sto μ2. Hence on some probability space �X we have a coupling (X0,X1) of μ0 and μ1 that
satisfies E(X1|X0) = X0 and on some probability space �Y we have a coupling (Y1, Y2) of μ1 and μ2 that satisfies
Y1 ≤ Y2. Therefore by using the Markov composition, or the gluing lemma [13, Chapter 1], there exists some proba-
bility space �Z and (Z0,Z1,Z2) such that Law(Z0,Z1) = Law(X0,X1) and Law(Z1,Z2) = Law(Y1, Y2). It follows
E(Z2|Z0) ≥ E(Z1|Z0) = Z0.

We give another illustration on how to apply Theorem 1.7 in the case of an order made of three subscripts.
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Corollary 1.8. Let μ,ν be elements of M. Then the relation μ 	C,+,sto ν holds if and only if there exists a probability
space (�,F,P) with a measurable set A and two random variables (X,T ) satisfying

PA-almost surely X ≤ E(T |X,A),

where PA(·) is the conditional probability P(· ∩ A)/P(A) and

(1) Law(X|A) = μ(R)−1μ,
(2) Law(T ) = ν(R)−1ν,
(3) P(A) = μ(R)ν(R)−1.

Proof. 1. According to Theorem 1.7, setting μ0 = μ and μ3 = ν, we can find μ1,μ2 ∈M with μ0 	C μ1 	+ μ2 	sto
μ3. We first assume μ3 ∈ P for simplicity. We apply Proposition 1.3 and Proposition 1.5 to the pairs (μ2,μ3) and
(μ0,μ1). According to the usual composition rules of the probability theory, we can find a pair (Z,T ) for (μ2,μ3)

and (X,Y ) for (μ0(R)−1μ0,μ1(R)−1μ1) satisfying the relations explained in these propositions. Moreover usual
properties of the probability theory allow us to couple these random variables in a probability space (�,F,P) and its
restriction (A,FA,PA) where A ⊆ � is a Borel set adapted to the relation μ1 	+ μ2. It satisfies P(A)μ2(R) = μ1(R)

and we have

• Law(T ) = μ3,
• Law(Z) = μ2,
• Law(Y ) = P(A)−1μ1,
• Law(X) = P(A)−1μ0

and

• Z ≤ T ,
• Y = Z, PA-almost surely,
• X = EA(Y |X), PA-almost surely.

The last line also writes X = E(Z|X,A), PA-almost surely. Thus X ≤ E(T |X,A), PA-almost surely.
2. We prove the converse statement. We assume that PA-almost surely X ≤ E(T |X,A) is satisfied and consider

ϕ ∈ EC ∩ E+ ∩ Esto. We have EA(ϕ(X)) ≤ EA(ϕ(E(T |X,A))) because ϕ is non-decreasing. This is smaller than
EA(ϕ(T )) because ϕ is convex. Finally this is smaller than P(A)E(ϕ(T )) because ϕ is non negative. We conclude
with (1)–(3) that

∫
ϕ dμ ≤ ∫

ϕ dν.
3. The statement is established if ν = μ3 is a probability measure. Using the usual normalisation of positive mea-

sures to probability measures, we get the other cases. �

2. Lipschitz continuity of the curtain coupling with respect to its marginals

In this section we recall the properties of the martingale curtain coupling πlc = Curt(μ, ν) between two measures
μ 	C ν. We prove that it is a continuous map by using the property of monotonicity satisfied by curtain couplings. We
establish a Lipschitz estimate for the shadow projection (μ, ν) �→ Sν(μ) and deduce that Curt : (μ, ν) ∈ P × P −→
	M is Lipschitzian when 	M is considered with the ad hoc (semi)metric Z. We also prove that such an estimate does
not hold in (	M,WR

2
). An important mathematical object introduced in this section is the reduced support that we

denote spt∗ π . This set of full mass contributes to a better understanding of the property of monotonicity.

2.1. Definitions of the shadows and the curtain coupling

In [2, Lemma 4.6] the following important theorem-definition is proven.

Definition 2.1 (Definition of the shadow). If μ 	C,+ ν, there exists a unique measure η such that

• μ 	C η,
• η 	+ ν,
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• if η′ satisfies the two first conditions (i.e μ 	C η′ 	+ ν), one has η 	C η′.
This measure η is called the shadow of μ in ν and we denote it by Sν(μ).

The shadows are sometimes difficult to determine. An important fact is that they have the smallest variance among
the set of measures η′. Indeed, η 	C η′ implies

∫
x dη = ∫

x dη′ and
∫

x2 dη ≤ ∫
x2 dη′ with equality if and only if

η = η′ or
∫

x2 dη = +∞.

Example 2.2 (Shadow of an atom, Example 4.7 in [2]). Let δ be an atom of mass α at a point x. Assume that
δ 	C,+ ν. Then Sν(δ) is the restriction of ν between two quantiles, more precisely it is ν′ = (Gν)#λ]s;s′[ where
s′ − s = α and the barycenter of ν′ is x.

The next lemma describes the tail of the shadows.

Lemma 2.3. Let μ,ν ∈ M satisfy μ 	C,+ ν. Assume that y = sup[sptμ] is finite. Then the restriction of (Sν(μ) −
μ)+ to [y,+∞[ is the stochastically leftmost measure θ among the measures of the same mass satisfying θ 	+
(ν − μ)+|[y,+∞[.

The corresponding statement holds in the case inf[sptμ] > −∞.

Before we write the proof, let us make clear that except if y is an atom of both μ and ν, the measure (Sν(μ) −
μ)+|[y,+∞[ is simply Sν(μ)|[y,+∞[ and (ν − μ)+|[y,+∞[ is simply ν[y,+∞[.

Proof. Using Strassen’s theorem (Proposition 1.5), let π be a martingale transport plan with marginals μ and Sν(μ).
Let (πx)x∈R be a disintegration where the measures πx are probability measures. Each πx can again be disintegrated
in a family of probability measures concentrated on two points and with barycenter x. Observe now that for a < x < b

and b′ ∈ ]x, b], one can compare b−x
b−a

δa + x−a
b−a

δb with b′−x
b′−a

δa + x−a
b′−a

δb′ in the following way:

• both measures have mass 1 and barycenter x,
• b′−x

b′−a
δa 	+ b−x

b−a
δa (inequality for the mass in a),

• b′−x
b′−a

δa + x−a
b′−a

δb′ 	C
b−x
b−a

δa + x−a
b−a

δb.

Remind that Sν(μ) = ∫ [ b−x
b−a

δa + x−a
b−a

δb]dζ0(x, a, b) where ζ0 is a positive measure with first marginal μ that is con-

centrated on {(x, a, b) ∈ R
3, a < x < b or a = x = b}. For a = x = b, we adopt the convention b−x

b−a
δa + x−a

b−a
δb = δx .

The measure (Sν(μ) − μ)+|[y,+∞[ of the statement can be written θ = ∫ [ x−a
b−a

δb]dζ(x, a, b) where ζ 	+ ζ0 and ζ is

concentrated on {(x, a, b) ∈R
3, x < b}. Let θ ′ satisfy θ ′ 	+ (ν − μ)+|[y,+∞[ and θ ′ 	sto θ . Hence one can consider a

measure ζ̄ concentrated on {(x, a, b, b′) ∈ R
4, x ≤ b′ < b} such that θ ′ = ∫ [ x−a

b−a
δb′ ]dζ̄ (x, a, b, b′) and the projection

of ζ̄ on the three first coordinates is ζ . We denote by ζ ′ the measure b′−a
b−a

ζ̄ and with a slight abuse of notation we
denote also by ζ ′ its projection on the first three coordinates. We set

η =
∫ [

b′ − x

b′ − a
δa + x − a

b′ − a
δb′

]
dζ ′(x, a, b, b′)

+
∫ [

b − x

b − a
δa + x − a

b − a
δb

]
d
(
ζ0 − ζ ′)(x, a, b).

Recall that

Sν(μ) =
∫ [

b − x

b − a
δa + x − a

b − a
δb

]
dζ ′(x, a, b, b′)

+
∫ [

b − x

b − a
δa + x − a

b − a
δb

]
d
(
ζ0 − ζ ′)(x, a, b).

Therefore according to the three remarks above, one has

• μ 	C η,
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• η 	+ ν,
• η 	C Sν(μ).

The second relation relies on∫ [
b′ − x

b′ − a
δa + x − a

b′ − a
δb′

]
dζ ′(x, a, b, b′) =

∫ [
b′ − x

b − a
δa

]
dζ ′ + θ ′.

The last relation is in fact an equality. Indeed, the domination η �C Sν(μ) is a consequence of the two first relations
and the definition of the shadow. Moreover 	C is antisymmetric so that η = Sν(μ). Hence ζ ′-almost surely we have
b = b′, which means θ ′ = θ . We have proven that the restriction of (Sν(μ) − μ)+ to [y,+∞[ is the stochastically
leftmost measure smaller than (ν − μ)+|[y,+∞[. �

The following result is one of the most important on the structure of shadows. It is Theorem 4.8 of [2].

Proposition 2.4 (Structure of shadows). Let γ1, γ2 and ν be elements of M and assume that μ = γ1 + γ2 	C,+ ν.
Then we have γ2 	C,+ ν − Sν(γ1) and

Sν(γ1 + γ2) = Sν(γ1) + Sν−Sν(γ1)(γ2).

Example 2.5 (Shadow of a finite sum of atoms). Let μ be the measure
∑n

i=1 αiδxi
and ν = G#λ]0,m] such hat

μ 	C,+ ν. We can apply Proposition 2.4 to this sum as well as Example 2.2 on the shadow of one atom. We obtain
recursively the following description. There exists an increasing sequence of sets J1 ⊆ · · · ⊆ Jn ⊆]0,m] satisfying that
Jk has measure

∑k
i=1 αi and Jk \ Jk−1 is a pseudo-interval of ]0,m] \ Jk−1, that is Jk \ Jk−1 =]s, t] \ Jk−1 for some

0 ≤ s, t ≤ m. These pseudo-intervals satisfy Sν(
∑k

i=1 αiδxi
) = G#λJk

for every k ≤ n.
Conversely any increasing sequence (Ji)i=1,...,n such that Jk \ Jk−1 is a pseudo-interval of ]0,m] \ Jk−1 is associ-

ated with a family of atoms αiδxi
with αi = λ(Ji) − λ(Ji−1) and xi is the barycenter of G#λJi\Ji−1 such that G#λJk

is

the shadow of
∑k

i=1 αiδxi
in ν.

With the shadow projections, we can introduce the left-curtain coupling. For atomic measures it is related to Ex-
ample 2.5 when we assume that (xi)i is an increasing sequence.

Definition 2.6 (Left-curtain coupling, Theorem 4.18 in [2]). Let μ,ν ∈ M satisfy μ 	C ν. There exists a unique
measure π ∈ 	M(μ,ν) such that for any x ∈ R the measure π]−∞,x]×R has first marginal μ]−∞,x] and second
marginal Sν(μ]−∞,x]). We denote it by πlc and call it left-curtain coupling.

One of the main theorems of [2] is the equivalence of three properties of couplings: left-curtain, left-monotone and
optimal. Let us define left-monotone couplings.

Definition 2.7 (Left-monotone coupling). Let π be an element of 	M(μ,ν). The coupling π is left-monotone if there
exists a Borel set � with

• π(�) = 1,
• for every (x, y−), (x, y+) and (x′, y′) elements of � satisfying x < x′ and y− < y+, the real y′ is not an element

of ]y−, y+[.

We can now state the result.

Proposition 2.8 (Theorem 1.9 in [2]). Let π ∈ 	M(μ,ν). We introduce c : (x, y) ∈ R
2 → [1 + tanh(−x)]√y2 + 1.

Then the properties are equivalent.

• Left-curtain: the transport plan π is the left-curtain coupling,
• Left-monotone: the transport plan π is left-monotone,
• Optimal: for any π̃ ∈ 	M(μ,ν), if π̃ �= π , then

∫
c dπ <

∫
c dπ̃ .
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Remark 2.9. See Example 2.11 about the fact that the left-monotonicity may not be satisfied for � = sptπ even if it
is realised for another �.

Remark 2.10. Actually Theorem 1.9 in [2] is written for another kind of cost c. However replacing Theorem 6.1
by Theorem 6.3, both of this paper, leads to this version. Actually the latter theorem states that if c is defined as
(x, y) �→ ϕ(x)ψ(y) where ϕ is positive and decreasing, ψ is positive and strictly convex the implication “optimal ⇒
left-curtain” still holds provided minπ̃∈	M(μ,ν)

∫
c dπ̃ is finite. In Proposition 2.8 this condition is satisfied without

more assumptions because μ, ν have finite first moments and the given c grows at most linearly at ±∞.
In [5], Henry-Labordère and Touzi have proved that functions c such that the partial derivative ∂yyxc is identically

negative also lead to the left-curtain coupling if minπ̃∈	M(μ,ν)

∫
c dπ̃ is finite. This contains, in the case of smooth

functions c, both the kind of costs in [2, Theorem 6.1] and [2, Theorem 6.3].

2.2. Qualitative continuity of the curtain coupling map

In this paragraph we show that Curt : (μ, ν) �→ πlc is continuous on P2. For the proof we are using the second
characterisation of left-curtain couplings: according to Proposition 2.8 they are exactly the left-monotone couplings
defined in Definition 2.7 with a set � ⊆ R

2 of full mass. Recall the classical definition of the support of a measure:
the support spt(π) is the smallest closed set C ⊆ R

2 such that π(R2 \ C) = 0. More generally if π(R2 \ C′ = 0) for
some measurable set C′, we say that π is concentrated on C′. Example 2.11 illustrates that for a left-monotone π the
set � = spt(π) may not fulfill the desired properties in Definition 2.7, which contrasts with the theory of the classical
transport problem. The measure π is concentrated on the modified support spt∗(π) that we define after Example 2.11.
We call it “support” even if it is not necessarily a closed set. In fact as spt∗(π) ⊆ spt(π), it is a closed set if and only
if it is the support of π . It is proved in Proposition 2.14 that unlike spt(π), the modified support satisfies the desired
properties in Definition 2.7.

Example 2.11. Consider μ = (1/2)λ[−1,1] and ν = (δ−1 +2δ0 +δ1)/4. For these marginals, considering the transport
plan given by the left-curtain coupling, the mass contained in [−1,0] is mapped to {−1,0} while the mass in [0,1] is
mapped to {0,1}. Thus (0,−1), (0,1) and (1,0) are elements of spt(π).

This example shows a typical difficulty that may arise on the diagonal set {(x, y) ∈ spt(π), y = x}, for instance
at the cut points: those points x satisfying uμ(x) = uν(x). According to [2, Lemma 8.5] these cut points provide
a decomposition of the martingale transport plans in irreducible components of R that depends only on μ and ν.
In particular π ′(]−∞, x]2 ∪ [x,+∞[2) = 1 for every π ′ ∈ 	M(μ,ν). In Example 2.11, x = 0 is such a cut point.
Proposition 2.14 shows that the problem raised in Example 2.11 does not occur when considering spt∗(π) instead of
spt(π).

First, let A be the set of x ∈ R such that π(]−∞, x[× ]x,∞[) = 0. Note for completeness that the cut points are
elements of A. Second, we denote the subset of A of points that are isolated in A on the right by A−. Note that A− is
countable. Finally we set

spt∗(π) = (
spt(π) \ (

A− ×R
)) ∪

⋃
μ(x)>0

{x} × sptπx,

where the kernel (πx)x∈R arises from the disintegration with respect to the projection on the first variable. As usual
it is only μ-almost surely uniquely defined. However for every atom x of μ, the conditional measure πx is uniquely
determined so that the definition of spt∗(π) does not suffer from any ambiguity. Moreover for μ(x) > 0 we have
always {x} × spt(πx) ⊆ spt(π) so that spt∗(π) ⊆ spt(π). Using the additivity of π and the fact that A− is countable
we obtain that π is concentrated on spt∗(π).

π
(
spt∗ π

) = [
π

(
spt(π) \ (

A− ×R
))] + π

[( ⋃
μ(x)>0

{x} × sptπx

)
∩ (

A− ×R
)]

= [
1 − π

(
A− ×R

)] +
∑

x∈A−,μ(x)>0

π
({x} × spt(πx)

) = 1 − μ
(
A−) +

∑
x∈A−

μ(x) = 1.
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In Proposition 2.14 and Theorem 2.16 we will use many times Lemma 2.13. This lemma relies itself on the fol-
lowing statement.

Lemma 2.12. Let (x, y) ∈ sptπ where π is a martingale transport plan and G a Borel set such that π(G) = 1.
If x < y, for any ε > 0 there exist (x1, y

−
1 ), (x1, y

+
1 ) ∈ G with y−

1 ≤ y+
1 , such that the point (x1, y

+
1 ) is in the ball

of centre (x, y) and radius ε and y−
1 < x + ε.

If x > y, the symmetric statement holds as well. There exists (x1, y
−
1 ), (x1, y

+
1 ) ∈ G with y−

1 ≤ y+
1 , such that the

point (x1, y
−
1 ) is in the ball of centre (x, y) and radius ε and y+

1 > x − ε.

Proof. It is sufficient to prove the first statement because the second is proved in the same way. We also can assume
without loss of generality that x < y − ε. We consider the usual disintegration of π with respect to μ = projx# π . Let
us denote the vertical cut G ∩ ({s} ×R) by {s} × Gs . For μ-almost every s, we have πs(Gs) = 1 and the expectation
of πs is s. Moreover as x is in the support of μ, and (x, y) in the support of π , we have also πs(]y − ε, y + ε[) > 0,
for any s in a subset S ⊆]x − ε, x + ε[ of positive μ-measure. As x /∈ [y − ε, y + ε], for almost every element s ∈ S,
we have max(x − ε, inf sptπs) < s < min(x + ε, sup sptπs). Hence, we can find (x1, y

−
1 ) and (x1, y

+
1 ) in G with

max(|x − x1|, |y − y+
1 |) ≤ ε and y−

1 < x + ε. �

Lemma 2.13. Let π be a martingale transport plan, (x, y) and (x′, y′) elements of spt(π) and assume x < x′. If
x < y′ < y or x > y′ > y, then π is not left-monotone.

Proof. It is sufficient to prove the first statement for x < y ′ < y; the other case is similar. Let (x, y) and (x′, y′) be
elements of spt(π) with x < y′ < y and � have π -measure 1. We apply Lemma 2.12 to G = � and ε < min(|y′ −
x|, |y′ − y|, |x′ − x|) and find x1, y

−
1 and y+

1 with (x1, y
±
1 ) ∈ �, |x1 − x| < ε, |y+

1 − y| < ε and y−
1 < x + ε. We are

in the forbidden configuration appearing in the definition of � because x1 < x′ and y−
1 < y′ < y+

1 . This is not directly
a contradiction because (x′, y′) may not be an element of �. Nevertheless, as (x′, y′) ∈ spt(π) ⊆ �̄ we can replace it
with some element (x′

1, y
′
1) ∈ �. As � was an arbitrary set, π is not left-monotone. �

Proposition 2.14. A martingale transport plan π is the left-monotone coupling of 	M(μ,ν) if and only if it satisfies
the following condition

• for every (x, y+), (x, y−) and (x′, y′) elements of spt∗(π), if x < x′ and y− < y+, we have y′ /∈]y−, y+[.
Proof. Let us first prove that π is left-monotone. The set spt∗(π) fulfills the requirements for �. Indeed π(spt∗ π) = 1
and the second condition is assumed in the statement.

Conversely, we assume now that there exists some � of mass 1 that satisfies the conditions in Definition 2.7.
Without loss of generality, we can assume � ⊆ spt(π): just take � ∩ spt(π). By contradiction we consider (x, y+) and
(x, y−) and (x′, y′) in spt∗(π) such that x < x′ and y′ ∈ ]y−, y+[. Note that spt∗(π) ⊆ spt(π) ⊆ �̄. In particular each
point of spt∗(π) can be approximated by a point of �.

We distinguish two cases.
Case 1: y′ �= x. We can easily conclude applying Lemma 2.13 to (x′, y′) and (x, y+) or (x, y−) depending respec-

tively whether x < y′ or x > y′.
Case 2: y′ = x. We can also assume π(]−∞, x[× ]x,+∞[) = 0 because if not there exists (x1, y1) ∈ sptπ with

x1 < x and x1 < y′ < y1, which permits us to apply Lemma 2.13 to (x′, y′) and (x1, y1) and provides a contradiction
with the fact that π is left-monotone. Hence we have x ∈ A. Remind that (x, y+) ∈ sptπ and y+ > y′ = x. Therefore
x is isolated from the right in A, so x ∈ A−. According to the definition of spt∗(π) it implies π({x} ×R) = μ(x) > 0
and y−, y+ ∈ spt(πx). As μ(x) > 0 we must have πx(�x) = 1 where �x = {y ∈ R, (x, y) ∈ �}. Hence we can find
two points y±

1 ∈ �x that are close to y±. The points (x, y−
1 ), (x, y+

1 ) together with some point of � close to (x′, y′)
provide a contradiction. �

Corollary 2.15. A martingale transport plan π is the left-monotone coupling of 	M(μ,ν) if and only if it satisfies
the following condition

• for every (x−, y+), (x+, y−) and (x′, y′) elements of spt∗(π), if x− ≤ x+ < x′ and y− < y+, then we have
y′ /∈]y−, y+[.
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Proof. If π satisfies this condition, it also satisfies the sufficient condition in Proposition 2.14 so that it is the left-
curtain coupling. For the other inclusion, let us consider π and three points (x−, y+), (x+, y−) and (x′, y′) in spt∗(π)

as in the statement but such that y′ ∈ ]y−, y+[. We prove that it is not a left-curtain coupling. If x− = x+, we simply
use the necessary condition in Proposition 2.14. Hence we assume x− < x+. We can now apply Lemma 2.13 with
(x′, y′) and (x−, y+) or (x+, y−) depending on whether x− < y′ or x+ > y′. �

With the last statement we can now implement the strategy of Theorem 5.20 in [13] in order to prove the continuity
of the curtain coupling Curt. Actually with Corollary 2.15 it is by now possible to consider triples of points that are
typical for the measure π⊗3 instead of vectors (x, y−, y+, x′, y′) in R

5.
Recall that in paragraph 2.3 we will prove the Lipschitz continuity of Curt for a specific semimetric Z by using

another method.

Theorem 2.16. Consider the mapping Curt : (μ, ν) ∈ D	C
�→ πlc, where D	C

= {(μ, ν) ∈ P2 : μ 	C ν}. This map-
ping is continuous from D	C

⊆ P2 to 	M ⊆ P(R2) where the spaces are equipped with the topologies Tcb(R)2 and
Tcb(R

2).

Remark 2.17. Theorem 2.16 also holds for the topologies T1(R)2 and T1(R
2). Indeed if W(μn,μ) and W(νn, ν)

converge to zero, Theorem 2.16 implies that πn = Curt(μn, νn) converges to π = Curt(μ, ν) in Tcb(R
2). Moreover

we have
∫ |x|dμn(x) → ∫ |x|dμ(x) and

∫ |y|dνn(y) → ∫ |y|dν(y), so that
∫
(|x| + |y|)dπn → ∫

(|x| + |y|)dπ . The

convergence of the first moments and the convergence of πn → π in Tcb(R
2) imply WR

2
(πn,π) → 0 (see for instance

[12, Proposition 7.12]).
Note that the quantitative statement established in Corollary 2.32 only provides the continuity for T1(R)2 and

T1(R
2). The proof relies on the fact that Curt(μ, ν) is a left-curtain coupling, while Theorem 2.16 uses that it is

left-monotone.

Proof of Theorem 2.16. Let us introduce a sequence (μn, νn) converging to (μ, ν). We assume that for every n ∈N,
πn is a left-monotone coupling of μn and νn. We will prove that πn has a limit π and that it is also left-monotone.
Due to Prokhorov’s theorem on compactness and the uniqueness of a left-monotone martingale coupling with given
marginals, we can reduce the proof to the case we know that πn converges to π .

We introduce the set E = {(x−, y+, x+, y−, x′, y′) ∈ R
6|x− ≤ x+ < x′ and y− < y′ < y+}. Assume that there is

a vector v ∈ E ∩ (spt∗(π))3, which according to Corollary 2.15 is equivalent to the fact that π is not left-monotone.
We will see that it implies that some πn is not left-monotone. Before we proceed to the proof, let us stress that π⊗3

n

converges to π⊗3 and as v ∈ (spt(π⊗3)) = (spt(π))3 we obtain a sequence vn with vn ∈ (spt∗(πn))
3 and vn → v. Our

goal will be to prove vn ∈ E or directly that πn is not left-monotone.
We distinguish two main cases.
Case 1: v ∈ E◦. As E◦ is an open set, vn ∈ E◦ for n sufficiently large, which provides the contradiction with the

fact that πn is left-monotone.
Case 2: v ∈ ∂E. We have x− = x+ and denote this real number simply by x. The arguments for the different

subcases that we will distinguish are very similar to the ones in the proof of Proposition 2.14. The cases 2.1 and 2.2
corresponds to Case 1 and Case 2 of this proposition.

Recall that vn = (x−
n , y+

n , x+
n , y−

n , x′
n, y

′
n) ∈ spt∗(πn)

3 tends to v. If x−
n ≤ x+

n we are done because with Corol-
lary 2.15 this implies vn ∈ E. Hence we must assume x−

n > x+
n .

Case 2.1: y′ �= x. This is not possible. If for instance x < y′, the relations x−
n < x′

n and < x−
n < y′

n < y+
n hold if n

is sufficiently large so that we can use Lemma 2.13 for the points (xn, y
+
n ), (x′

n, y
′
n) ∈ spt(πn). Hence this contradicts

that πn is left-monotone.
Case 2.2. Hence up to now we have assumed x = x− = x+ and x−

n > x+
n and y′ = x. We show now that x ∈ A(π).

Indeed if it is not true there exists a sequence (sn, tn) ∈ spt(πn) converging to (s, t) ∈ sptπ ∩ (]−∞, x[× ]x,+∞[).
Thus, if n is sufficiently large, recalling that y′

n tends to x we can apply Lemma 2.13 to (sn, tn) and (x′
n, y

′
n). Indeed

we have st < x′
n and sn < y′

n < tn.
Let us see that x ∈ A \ A− is impossible. Actually (x, y+) ∈ spt∗ π is an element of sptπ and x < y+. It follows

π(]−∞, x1[× ]x1,+∞[) > 0 for any x1 ∈]x, y+[. Hence x ∈ A−. It follows μ(x) > 0.
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We assume for simplicity that x = 0. We denote μ(x) ·πx(]y+/2,+∞[) by m. It is not zero because y+ ∈ spt(πx).
Let ε > 0 be strictly smaller than min(x′, y+/2). We also assume that it is sufficiently small to satisfy a = (y+/2 −
ε)(πx(]y+/2,+∞[)/8) − ε > ε and μ([−ε, ε]) < 2μ(x). We know that

lim infπn

(] − ε,+ε[×]y+/2,+∞[)
≥ π

(] − ε,+ε[×]y+/2,+∞[)
≥ μ(x) · πx

(]y+/2,+∞[) = m,

and for μn = projx# πn,

lim supμn

([−ε, ε]) ≤ μ
([−ε, ε]).

Hence, there is n such that πn(] − ε,+ε[× ]y+/2,+∞[) > m/2 and μn([−ε, ε]) < 2μ([−ε, ε]) < 4μ(x). Therefore
on a set B ⊆] − ε, ε[ of positive μn(ds)-measure the measure (πn)s(]y+/2,+∞[) is greater than μn(] − ε, ε[)−1 ·
m/2 > πx(]y+/2,+∞[)/8. Hence for s ∈ B , using the fact that the barycenter of (πn)s is s, we have

(πn)s
(]−∞,−a[) > 0,

where a = (y+/2 − s)(πx(]y+/2,+∞[)/8) − s. Remind that −a < −ε < s. Let � be a Borelian set of R
2 such

that πn(�) = 1. As for almost every s, we have (πn)s({t ∈ R|(s, t) ∈ �) > 0}), we obtain that there are (s, t−) and
(s, t+) in �, with t+ > y+/2 and t− < −ε, and (s′, t ′) ∈ � close to (x′,0) such that t ′ ∈ ]t−, t+[. We conclude with
Definition 2.7 that πn can not be left-monotone, which contradicts our assumptions. �

Remark 2.18. Theorem 2.16 provides a more direct and intuitive introduction of πlc = Curt(μ, ν) than Definition 2.6.
In this alternative presentation relying on [2, Section 2] (see also Lemma 2.33) one considers a sequence of atomic
measures μn that converges to μ (see for instance point 3 in the proof of Proposition 2.34). We may assume μn 	C μ

in order to satisfy (μn, ν) ∈ D	C
. The left-curtain couplings πn = Curt(μn, ν) can be described easily, as is done for

instance in the proof of Lemma 2.33. For that purpose it is not necessary to introduce the shadows in full generality
but only to know what is the shadow of an atom. According to the theory πlc is the limit of (πn)n.

Note that without the theory from [2], Theorem 2.16 can only prove that the accumulation points of the sequence
(πn)n are all left-monotone couplings. Without Proposition 2.8 it is not known that the left-monotone elements of
	M(μ,ν) are reduced to {πlc}. Hence the alternative presentation explained in the present remark can not be seen as
a definition.

We end the paragraph on qualitative continuity with two results on the continuity of the shadows that will be useful
in Section 2.3.

Lemma 2.19 (Role of the mass of ν close to ±∞). Let μ and ν be measures of M such that μ 	C,+ ν. Let (νn)n
such that inf(sptνn) tends to +∞. Then the sequence Sν+νn(μ) tends to Sν(μ) in M.

The similar statements hold if sup(sptνn) tends to −∞ or νn([an, bn]) = 0 with −an, bn → +∞.

Proof. 1. We will prove that the potential function of Sν+νn(μ) pointwise converges to the potential function of
Sν(μ). Remind that it was introduced after W at the beginning of Section 1. Fix a ∈ R and ε > 0 and let δ > 0 be such
that any measure α 	+ ν of mass α(R) ≤ δ satisfies

∫ |x − a|dα ≤ ε. Let μ′ be the leftmost measure smaller than μ

and of mass μ′(R) = μ(R) − δ.
2. It is enough to prove that for any n satisfying inf sptνn > sup[sptSν(μ′)] we have

∣∣uSν(μ)(a) − uSν+νn (μ)(a)
∣∣ =

∣∣∣∣
∫

|x − a|dSν(μ) −
∫

|x − a|dSν+νn(μ)

∣∣∣∣ ≤ ε. (3)

Before we state this inequality, we have to prove that sup[sptSν(μ′)] is finite. Actually, the shadow of μ′ restricted on
] sup sptμ′,+∞[ (more precisely (Sν(μ′)−μ′)+|[sup(sptμ′),+∞[) is made of the leftmost quantiles of ν|] sup(sptμ′),+∞[
as is proved in Lemma 2.3. As some mass must remain for the shadow of μ − μ′, as explained in Proposition 2.4, this
can not be the full ν|] sup(sptμ′),+∞[.
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3. As Sν(μ′) 	+ ν +νn and μ′ 	C Sν(μ′), we have Sν+νn(μ′) 	C Sν(μ′). Considering Strassen’s theorem (Propo-
sition 1.5), we obtain the corollary that sup(sptSν+νn(μ′)) ≤ sup(sptSν(μ′)). With the hypothesis made in 2 on the
support of νn this proves Sν+νn(μ′) 	+ ν. Hence Sν+νn(μ′) �C Sν(μ′). Finally Sν+νn(μ′) = Sν(μ′).

4. We denote by σ the latter measure. Applying Proposition 2.4 to the shadow of the sum μ′ + (μ − μ′) we get∫
|x − a|dSν+νn(μ) =

∫
|x − a|dσ +

∫
|x − a|dSν+νn−σ

(
μ − μ′)

and ∫
|x − a|dSν(μ) =

∫
|x − a|dσ +

∫
|x − a|dSν−σ

(
μ − μ′).

As the shadow of μ − μ′ in ν + νn − σ is smaller in the convex order than its shadow in ν − σ and reminding the
choices made in 1 we get

0 ≤
∫

|x − a|dSν+νn−σ
(
μ − μ′) ≤

∫
|x − a|dSν−σ

(
μ − μ′) ≤ ε,

so that (3) is established.
5. In the case sup(sptνn) tends to −∞ we just do the symmetric proof. If νn([an, bn]) = 0 with −an, bn → +∞,

we implement a similar proof with the following modification: at step 1, μ′ is chosen in the middle of μ so that its
shadow has a compact support (adapt the argument of 2 that relies on Lemma 2.3). Steps 3 and 4 go in the same
way. �

With Theorem 2.16 we obtain the corollary.

Corollary 2.20. Under one of the three hypotheses of Lemma 2.19, we have Curt(μ,Sν+νn(μ))
M(R2)−→ Curt(μ,Sν(μ)).

We remind another result of stability from [2].

Proposition 2.21 (Proposition 4.15 in [2]). Assume that (μn)n is increasing in the convex order and μn 	C μ 	C,+ ν

for every n ∈ N. Then both (μn)n and (Sν(μn))n converge in M. If we call μ∞, respectively S∞ the limits, then the
measure S∞ is the shadow of μ∞ in ν.

Again with Theorem 2.16 we obtain a corollary.

Corollary 2.22. Under the hypotheses and notations of Proposition 2.21, we have Curt(μn,S
ν(μn))

M(R2)−→
Curt(μ∞, S∞).

2.3. Lipschitz continuity of the shadow, quantitative estimates

In this section we give a quantitative version of Theorem 2.16 by using other methods. We start with definitions.

2.3.1. Up and down measures
Definition 2.23. Let μ and ν satisfy μ(R) = ν(R) and call t this constant. We define the up and down measures of μ

and ν as

Up(μ, ν) = max(Gμ,Gν)#λ[0,t] and Down(μ, ν) = min(Gμ,Gν)#λ[0,t].

Example 2.24.

(i) If μ and ν are probability measures and Law(X,Y ) is the quantile coupling of these measures, Up(μ, ν) and
Down(μ, ν) are simply the laws of max(X,Y ) and min(X,Y ).
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(ii) If μ = ∑n
i=1 δxi

and ν = ∑n
i=1 δyi

with (xi)i , (yi)i non-decreasing sequences, then Up(μ, ν) = ∑n
i=1 δmax(xi ,yi )

and Down(μ, ν) = ∑n
i=1 δmin(xi ,yi ).

Lemma 2.25. Let μ and ν be as in Definition 2.23. We have

W(μ,ν) = W
(
μ,Down(μ, ν)

) + W
(
Down(μ, ν), ν

)
= W

(
μ,Up(μ, ν)

) + W
(
Up(μ, ν), ν

)
.

Proof. The proof simply relies on the formula W(μ,ν) = ∫ |Gν − Gμ|dλ in Lemma 1.4 and |Gν − Gμ| = (Gμ −
G) + (Gν − G) = (G′ − Gμ) + (G′ − Gν) where G = min(Gμ,Gν) and G′ = max(Gμ,Gν). �

Lemma 2.26. Up(μ,μ′) + ν = Up(μ + ν,μ′ + ν).

Proof. One can check with the definition of Up by random variables that FUp(μ,μ′)(t) = min(Fμ(t),Fμ′(t)). Hence
for every t ∈R

FUp(μ,μ′)+ν(t) = min
(
Fμ(t),Fμ′(t)

) + Fν(t)

= min
(
Fμ(t) + Fν(t),Fμ′(t) + Fν(t)

)
.

But this is also the cumulative distribution function of Up(μ + ν,μ′ + ν). If μ, μ′ are not probability measures, the
result follows from their normalisation. �

The shadow Sν(μ) is only defined for μ 	C,+ ν, which may be restrictive for some proofs. But if, roughly speaking,
we add mass close to infinity to ν this shadow can exist. The two next lemmas permit us to implement this idea, which
for instance plays a role in the final proof of Section 2.

Lemma 2.27 (Adding mass at ±∞). If μ 	C,+,sto ν, for any a ∈ R there exists ν′ with ν′ concentrated on ]−∞, a]
and μ 	C,+ ν + ν′.

Similarly, if no assumption is done on μ, for any a, b ∈ R, there exists ν′ with ν′(]a, b[) = 0 and μ 	C,+ ν′.

Proof. 1. We start to prove the first result in the special case μ 	+,sto ν. For any a ∈ R, we will find ν′ with
ν′(]a,+∞[) = 0 and μ′ 	C,+ ν + ν′. Let assume without loss of generality that μ is a probability measure and
applying Theorem 1.7 let X ≤ Y be random variables with laws μ = Law(X) and Law(Y ) 	+ ν. Let us fix a ∈R and
consider in a first time the case μ(]−∞, a]) = 0. In this case we introduce U a random variable independent from X

and define Z

Z =
{

Y if U ≥ Y−X
Y−a

,
a otherwise.

Therefore E(Z | X) = X. Observe that Law(Z) 	+ ν + P(Z = a)δa so that for ν′ = δa we have μ 	C,+ ν + ν′.
In the second case we can write μ = μ1 + μ2 where μ1 is concentrated on A=]−∞, a] and μ2(A) = 0. By using

the result just proved for μ2, we obtain ν′
2 concentrated on A such that μ2 	C,+ ν + ν′

2. We set ν′
1 = μ1 so that we

also have μ1 	C,+ ν′
1. As ν′ = ν′

1 + ν′
2 is concentrated on A, we are done.

2. If μ 	C,+,sto ν, according to Theorem 1.7 there exists μ′ such that μ 	C μ′ and μ′ 	+,sto ν. Therefore with
paragraph 1, we find for every a ∈R a measure ν′ concentrated on ]−∞, a] such that μ′ 	C,+ ν + ν′. But μ 	C,+ μ′
so that μ 	C,+ ν + ν′ is also satisfied.

3. For the second statement fix a and b and set ν = μ(]−∞, b])δb + μ|]b,∞[. As μ 	sto ν, one can apply part 1. of
the present proof. �

2.3.2. Semimetric Z on the space of transport plans
A semimetric is a function that is positive-definite and symmetric. In other words it satisfies all axioms of a distance
except the triangle inequality.
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Definition 2.28. Let π and π ′ be two transport plans. We define Z(π,π ′) as

Z
(
π,π ′) = inf

(πs ,π ′s )s∈[0,1]
sup

s∈[0,1]
max

(
W

(
μs,μ′s),W (

νs, ν′s))

= max
(
W

(
μ,μ′); inf

(πs ,π ′s )s∈[0,1]
sup

s∈[0,1]
W

(
νs, ν′s)),

where μs , νs are the marginals of πs and μ′s , ν′s the marginals of π ′s . The infimum is taken among all the families
(πs)s∈[0,1], (π ′s)s∈[0,1] that satisfy

1. ∀s ∈ [0,1], πs(R2) = s,
2. ∀s ∈ [0,1], ∃x ∈ [−∞,+∞], π]−∞,x[×R 	+ πs 	+ π]−∞,x]×R (in fact x = Gμ(s)),
3. if s ≤ t , then πs 	+ πt .

In the Main theorem we use the most natural extension of Z to the measures of mass λ > 0 given by Z(λπ,λπ ′) =
λZ(π,π ′).

Remark 2.29. If the first marginals of π and π ′ are continuous, there is no freedom in the choice of (πs)s∈[0,1],
(π ′s)s∈[0,1]. Hence Z can be reformulated as

Z
(
π,π ′) = max

{
W(μ,μ′),
supFμ(x)=Fμ′ (x′) W(projy# π |]−∞,x]×R,projy# π ′|]−∞,x′]×R).

Proposition 2.30. The function Z is a semimetric on P(R2) and the triangle inequality is satisfied on the subspace
of measures with continuous first marginal. Moreover if Z(πn,π) → 0 we have πn → π for the topology T1(R

2).

Proof. 1. It is clear that Z is symmetric and Z(π,π ′) = 0 if and only if π = π ′. This principle is used in the definition
of the left-curtain coupling (see Definition 2.6): the measures projy# π |]−∞,x]×R completely determine π . The triangle
inequality on the subspace of measures with continuous first marginal follows from the triangle inequality of W and
Remark 2.29.

2. Assume that Z(πn,π) tends to 0. For every n, introduce families (πs
n)s∈[0,1] that together with some families

decomposing π satisfy the limit condition. We introduce a sequence π ′
n of transport plans defined as intermediate

measure between the measures πn and π . Their first marginals are projx# π ′
n = μ like π and one associates them with

the same family νs
n = projy# πs

n like πn. More precisely, let (U,X, (Xn,Yn))n∈N be such that

• Law(U) = λ[0,1],
• (U,X,Xn) is comonotonic (i.e. X = GX(U) and Xn = GXn(U) almost surely),
• Law(X) = μ,
• Law(Xn,Yn) = πn,
• νs

n = s Law(Yn | U ≤ s),

then π ′
n is the law of (X,Yn) and πn = Law(Xn,Yn).

For any s ∈ [0,1], let νs be projy# πs with (πs)s∈[0,1] some family admissible in the sense of Definition 2.28(1)–(3).
We do not necessarily assume W(νs

n, ν
s) → 0 for every s but we will need the following remark in our proof: for any

x ∈ R, the measure νFμ(x) is completely characterised and it is projy#(π |]−∞,Fμ(x)]×R). Indeed this is the only measure

of mass Fμ(x) satisfying point (2) in Definition 2.28. Hence for any x ∈R, W(ν
Fμ(x)
n , νFμ(x)) → 0 because the family

(νs
n)s∈[0,1] corresponding to (πs

n)s∈[0,1] has been properly chosen for the convergence.

We can now proceed to the proof. We want to prove WR
2
(πn,π

′
n) → 0 and WR

2
(π ′

n,π) → 0. On the one hand

we have WR
2
(πn,π

′
n) ≤ E(|X − Xn| + |Yn − Yn|) = W(μn,μ) ≤ Z(πn,π) → 0. On the other hand, we prove that

at any continuity point (x, y) ∈ R
2 of Fπ , the sequence Fπn pointwise converges to Fπ . According to a classical

characterisation (see e.g. [3, Example 2.3]), this will imply πn → π in the weak topology Tcb(R
2). Moreover, as

W(ν, νn) = W(ν1, ν1
n) → 0 and μ is the first marginal of both π ′

n and π , one can apply Remark 2.17. Therefore the

weak convergence π ′
n → π implies the weak convergence with finite first moments WR

2
(π ′

n,π) → 0.
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Let (x, y) be a continuity point of Fπ . We have Fπ(x, y) = νFμ(x)(]−∞, y]) and also Fπ ′
n
(x, y) = π ′

n(]−∞, x]×
]−∞, y]) = ν

Fμ(x)
n (]−∞, y]). This tends to νFμ(x)(]−∞, y]) because W(νFμ(x), ν

Fμ(x)
n ) → 0 and y is a continuity

point of νFμ(x). We conclude that π ′
n weakly converges to π . Therefore

WR
2
(πn,π) ≤ WR

2(
πn,π

′
n

) + WR
2(

π ′
n,π

) → 0. �

The following estimate is one of our main theorems. It provides a quantitative estimate on the Lipschitz continuity
of the shadow projection (μ, ν) �→ Sν(μ).

Theorem 2.31. Let μ, μ′ and ν, ν′ be elements M. We assume μ 	C,+ ν and μ′ 	C,+ ν′ respectively. We assume
also μ(R) = μ′(R) and ν(R) = ν′(R). The following relation holds

W
(
Sν(μ),Sν′(

μ′)) ≤ W
(
μ,μ′) + 2W

(
ν, ν′).

The proof of the theorem is postponed at the end of the section. It relies on all results in between including
Proposition 2.34 and Proposition 2.36. The first proposition is concerned with ν = ν′ and the second with μ = μ′.
Before we start with this program let us state a corollary of Theorem 2.31 that gives a quantitative turn to Theorem 2.16
in terms of the semimetric Z. A similar result can not be satisfied with WR

2
in place of Z as is explained later in

Example 2.37.

Corollary 2.32. Consider the mapping Curt : (μ, ν) ∈ D	C
�→ πlc, where D	C

= {(μ, ν) ∈ P2 : μ 	C ν}. This map-
ping is continuous from D	C

⊆P2 to 	M ⊆P(R2) equipped with the topologies T1(R)2 and T1(R
2). More precisely

Z
(
Curt(μ, ν),Curt

(
μ′, ν′)) ≤ W

(
μ,μ′) + 2W

(
ν, ν′).

Proof. The continuity is obtained from the estimate in the statement and Proposition 2.30. Let us prove the estimate.
Like in paragraph 1.2 we have μ = (Gμ)#λ[0,1]. We introduce μs = (Gμ)#λ[0,s] and νs = Sν(μs). In a similar way to
Definition 2.6 of πlc, we obtain a unique family πs , increasing for 	+, and with marginals μs and νs . We proceed in
the same way for μ′ and ν′. We obtain the wanted estimate by applying Theorem 2.31 to these measures. �

We start with the preliminaries of the proof of Theorem 2.31.

2.3.3. Variations in μ

Lemma 2.33 (Important lemma). Let n an integer and μ, μ′ be two measures that are the sum of n atoms of the
same mass and such that μ 	sto μ′. If ν ∈M satisfies μ 	C,+ ν and μ′ 	C,+ ν we have Sν(μ) 	sto Sν(μ′).

Proof. Without loss of generality, we can assume that the atoms are all Dirac masses (the mass is 1). We write
μ = ∑n

i=1 δxi
with xi ≤ xi+1 for any i < n and use the same notations for μ′. As μ 	sto μ′, one has xi ≤ x′

i for any
i ≤ n.

The proof relies on the description of the shadow of a measure concentrated in one point as G#λ]q,q+α] where
G is the inverse cumulative function of the target measure Gν and α is the mass of the atom (see Example 2.2). It
relies also on the decomposition Proposition 2.4 as in Example 2.5: if μ̄ (resp. μ̄′) is the restriction of μ (resp. μ′) to
{x1, . . . , xn−1} (resp. {x′

1, . . . , x
′
n−1}) we have

Sν(μ) = Sν(μ̄) + Sν−Sν(μ̄)(δxn)

and the similar equation holds for μ′, μ̄′ and δx′
n
.

We will prove the result by induction on n, the number of atoms, not greater than m = ν(R). For n = 1, the
statement is obvious. Actually, denoting by G the inverse cumulative function of ν (it satisfies G#λ]0,m] = ν) the
shadow measures can be written as G#λ]p,p+1] and G#λ]p′,p′+1] where p ≤ p′.

If n ≥ 2 we adopt the notations μ̄, μ̄′ introduced above and we assume a statement stronger than the lemma that
we call Hn−1: there exists two sets J̄ , J̄ ′ ⊆ ]0,m] that satisfy
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• the masses of J̄ and J̄ ′ are n − 1,
• J̄ is a disjoint union of intervals of type ]a, b]. The same holds for J̄ ′,
• these intervals have integer length,
• λJ̄ 	sto λJ̄ ′ (during this proof we note it simply J̄ 	sto J̄ ′). In particular, max(J̄ ) ≤ max(J̄ ′),
• G#λJ̄ = Sν(μ̄) and G#λJ̄ ′ = Sν(μ̄′) (in particular Sν(μ̄) 	sto Sν(μ̄′)).

As ν may possess atoms of mass > 1, the sets J̄ and J̄ ′ may not be unique. We assume that max J̄ and max J̄ ′ are as
small as possible: no other set satisfying the five conditions before has a smaller maximum. Note also that we proved
H1 in the paragraph above.

Starting from J̄ and J̄ ′ as in Hn−1 where n ≤ m, we now construct sets J ⊇ J̄ and J ′ ⊇ J̄ ′ that satisfy Hn where
μ, μ′ replace μ̄, μ̄′. In fact we follow the way described at the beginning of the proof and look for the shadow of δxn

(resp. δx′
n
) in ν − Sν(μ̄) = G#λ]0,m[\J̄ (resp. ν − Sν(μ̄′)). We obtain the restriction of these measures to a “quantile

interval,” which can be described as G#λI\J̄ and G#λI ′\J̄ ′ , where I =]p,q] and I ′ = ]p′, q ′] are intervals and I \ J̄

and I ′ \ J̄ ′ are pseudo-intervals (see Example 2.5) of Lebesgue measure 1. If the shadow is a Dirac mass, several
choices of I may be available. We choose the smallest possible max I , respectively max I ′. Finally the sets J = J̄ ∪ I

and J ′ are the union of intervals of integer length. Moreover Sν(μ) = G#λJ and Sν(μ′) = G#λJ ′ as we want.
We still have to prove the relation J 	sto J ′. Our first step is to see max I > max J̄ (and max I ′ > max J̄ ′, which

can be shown in the same way). Indeed it is clear if xn > xn−1. If xn = xn−1, a problem may happen if the shadows
of both δxn−1 and δxn are δxn , but we recall that max J̄ was the smallest possible value coherent with Hn−1 so that
max I > max J̄ as we want. Therefore q := max I and J̄ completely determine J . Indeed, one obtains J in adding the
greatest real numbers in ]0,m] \ J̄ that are smaller than q . One proceeds until the set has measure 1. The result can
also be written J = J̄ ∪]p,q].

One can see the barycenter of μ as a continuous and increasing function of q and the same is true for μ′ and
q ′ = supJ ′. Let us fix q ′ and consider q as a variable. As J̄ 	sto J̄ ′, one has also (]0,m] \ J̄ ′) 	sto (]0,m] \ J̄ ).
Hence if for the shadows of xn and x′

n in ν − Sν(μ̄) and ν − Sν(μ̄′) respectively, we start from the same value
q = q ′ > max J̄ ′ ≥ max J̄ at the right of the interval ]0,m] and collect to the left the real numbers in ]0,m] \ J̄ and
]0,m]\ J̄ ′ respectively until one has a set of mass 1, the set that we obtain for Sν−Sν(μ)(δxn) is stochastically greater as
the one for Sν−Sν(μ̄′)(δx′

n
). In other words I ′ \ J̄ ′ 	sto I \ J̄ . This relation still holds after the push-forward G#. Taking

the barycenters, we obtain x′
n ≤ xn. But the hypothesis of the lemma states xn ≥ x′

n. Having in mind the continuity
and the monotonicity of xn with respect to q we see that the correct position of q satisfies q ≤ q ′.

The length of the rightmost interval of J ′ is an integer that we denote by k. As q ′ ≥ q the upper part of mass k of
Sν(μ′) in the stochastic order is greater, for the same order, than the corresponding measure part of Sν(μ). The rest
of J ′ is included in J̄ ′. Due to the induction, it is greater than the corresponding left part of J̄ of mass n − k. This left
part of J̄ is greater (in the stochastic order) than the left part of J , that is the most left part of mass n − k, because
J̄ ⊆ J . Thus J 	sto J ′ and this pair fulfills Hn. �

Proposition 2.34. Let μ,μ′ ∈M with the same mass. Assume ν ∈ M satisfies μ 	C,+ ν and μ′ 	C,+ ν. We have

W
(
Sν(μ),Sν

(
μ′)) ≤ W

(
μ,μ′). (4)

Proof. 1. We first assume that μ and μ′ are made of finitely many atoms of the same mass. We also assume
Down(μ,μ′) 	C,+ ν and we denote this measure by μ̃. As explained in Example 2.24, μ̃ is a measure of the same
type as μ and μ′. Hence we can apply Lemma 2.33 to the pairs (μ, μ̃) and (μ′, μ̃). Using Lemma 1.4 and Lemma 2.25
we can compute as follows

W
(
μ,μ′) = W(μ, μ̃) + W

(
μ′, μ̃

)
= W

(
Sν(μ),Sν(μ̃)

) + W
(
Sν

(
μ′), Sν(μ̃)

)
≥ W

(
Sν(μ),Sν

(
μ′)).

2. If μ̃ 	C,+ ν does not hold, we have μ̃ 	C,+,sto ν so that there exists (νn)n as in Lemma 2.27. We have μ̃ 	C,+
ν + νn where sup sptνn tends to −∞ and the computation above leads to W(Sν+νn(μ),Sν+νn(μ′)) ≤ W(μ,μ′).
Therefore with Lemma 2.19, we obtain (4).
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3. For general μ, μ′ of the same mass m, that we assume to be 1, we approach them in P by measures μn 	C μ

and μ′
n 	C μ′ with the same barycenter, obtained as the sum of 2n atoms of mass m/2n. We do it in the following

way: μn is defined as
∑2n

k=1
1
2n δxk

where

xk = 2n

∫ (k+1)/2n

k/2n

Gμ(t)dλ(t).

The quantile function associated with μn is constant on each ]k/2n, (k + 1)/2n] with value the mean of Gμ on this
interval. We recognise for the filtration made of the dyadic intervals of ]0,1], the martingale associated with the
random variable Gμ ∈ L1(]0,1]), the L1-norm being the Kantorovich distance between the measures, as explained in
Lemma 1.4. Hence (μn)n is non decreasing for the convex order and μn −→ μ in M. Thus applying Proposition 2.21
we obtain the wanted estimate as n goes to ∞. �

Remark 2.35. One can relax the assumption to have atomic measures in Lemma 2.33 by using the approximation
detailed in point 3 of the proof of Proposition 2.34. Indeed, the stochastic order is stable in the weak topology so that
Sν(μ) 	sto Sν(μ′) is true for general measures μ 	sto μ′.

2.3.4. Variations in ν and conclusion
Proposition 2.36. Let μ, ν and ν′ be elements of M such that μ 	C,+ ν, μ 	C,+ ν′ and ν(R) = ν′(R). Then it holds

W
(
Sν(μ),Sν′

(μ)
) ≤ 2W

(
ν, ν′).

Proof. 1. We make first the additional assumption ν 	sto ν′ and we will prove W(Sν(μ),Sν′
(μ)) ≤ 2W(ν, ν′) in this

case. Because of Proposition 2.21, we can assume without loss of generality that μ is of type
∑n

i=1 αiδxi
by using

the same method as at step 3 of Proposition 2.34. We can describe Sν(μ) as it is done in Example 2.5 and introduce
for this purpose a sequence J1 ⊆ · · · ⊆ Jn. We have Sν(μ) = (Gν)#λJn and for any k, Sν(

∑k
αiδxi

) = (Gν)#λJi
. We

introduce now S′ = (Gν′)#λJn and μ′ = ∑k
αiδx′

i
where x′

i is the barycenter of (Gν′)#λJi\Ji−1 . As ν 	sto ν′, we have
Gν ≤ Gν′ and Sν(μ) 	sto S′. Of course xi ≤ x′

i so that μ 	sto μ′. According to the converse statement in Example 2.5

we also have S′ = Sν′
(μ′). Therefore using Proposition 2.34 for μ,μ′ 	C,+ ν′ we obtain

W
(
Sν(μ),Sν′

(μ)
) ≤ W

(
Sν(μ),Sν′(

μ′)) + W
(
Sν′(

μ′), Sν′
(μ)

)
≤ W

(
ν, ν′) + W

(
μ,μ′) ≤ 2W

(
ν, ν′).

Indeed, due to μ 	sto μ′ and Sν(μ) 	sto Sν′
(μ′) we have

W
(
μ,μ′) = W

(
Sν(μ),Sν′(

μ′)) =
∫

Jn

(Gν′ − Gν)dλ ≤
∫ ν(R)

0
(Gν′ − Gν)dλ = W

(
ν, ν′).

2. We assume now μ 	C,+ Up(ν, ν′). In this case we use the triangle inequality, paragraph 1 and Lemma 2.25 so
that we can establish

W
(
Sν(μ),Sν′

(μ)
) ≤ 2W

(
ν, ν′).

3. Let us assume that μ 	C,+ Up(ν, ν′) does not hold. According to Lemma 2.27, there exists γ such that μ 	C,+
Up(ν, ν′) + γ . But as stated in Lemma 2.26, Up(ν, ν′) + γ is also Up(ν + γ, ν′ + γ ) and μ 	C,+ ν + γ as well as
μ 	C,+ ν′ + γ . Therefore according to the previous paragraph

W
(
Sν+γ (μ),Sν′+γ (μ)

) ≤ 2W
(
μ,μ′).

Note that in Lemma 2.27, sup(spt(γ )), that is the upper bound on the support of γ can be chosen arbitrary close
to −∞. Hence, letting sup(sptγ ) go to −∞, Lemma 2.19 permits us to conclude in the most general case. �
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Proof of Theorem 2.31. We combine Proposition 2.34 and Proposition 2.36 and simply use the triangle inequality

W
(
Sν(μ),Sν′(

μ′)) ≤ W
(
Sν(μ),Sν′

(μ)
) + W

(
Sν′

(μ),Sν′(
μ′))

≤ 2W
(
ν, ν′) + W

(
μ,μ′).

This can only be written doing the further assumption μ 	C,+ ν′.
In the general case, let γ be such that μ 	C,+ ν′ + γ . Of course we still have μ 	C,+ ν + γ and μ′ 	C,+ ν′ + γ .

The previous computation holds and writes

W
(
Sν+γ (μ),Sν′+γ

(
μ′)) ≤ 2W

(
ν + γ, ν′ + γ

) + W
(
μ,μ′).

But W(ν + γ, ν′ + γ ) = W(ν, ν′). We conclude using the same method as at the end of the proof of Proposition 2.36.
With the end of Lemma 2.27 we obtain a suitable sequence (γn)n and we use the end of Lemma 2.19 for the conver-
gence W(Sν+γn(μ),Sν′+γn(μ′)) → W(Sν(μ),Sν′

(μ′)). �

The following example shows that the left-curtain Curt is not Lipschitzian when considering the Kantorovich
distances W and WR

2
. In other words a result like Corollary 2.32 does not hold.

Example 2.37. For any integer n ≥ 1 and ε < 1, we consider four measures of mass n. The first two involve Dirac
masses at some points k ∈N and ε > 0.

μn =
n−1∑
k=0

δk and μ′
n = δε +

n−1∑
k=1

δk

and the two others are made of uniform measures

νn = λ[−1/2,n−1/2] and ν′
n = λ[−1/2+ε/n,n−1/2+ε/n].

Note that μn 	sto μ′
n, νn 	sto ν′

n and W(μn,μ
′
n) = W(νn, ν

′
n) = ε. As the measures are pairwise in convex order we

can define the curtain couplings πn = Curt(μn, νn) and π ′
n = Curt(μ′

n, ν
′
n). We have

πn =
n−1∑
k=0

δk ⊗ λ[k−1/2,k+1/2].

The expression of π ′
n is more intricate.

π ′
n = δε ⊗ λ[−1/2+ε,1/2+ε] +

n−1∑
k=1

δk ⊗ λAk,1 ∪Ak,2 ,

where for any k ≤ n−1, the set Ak,1 ∪Ak,2 = [−1/2+ ε/(k +1),−1/2+ ε/k)]∪ [k −1/2+ ε/k, k +1/2+ ε/k + 1]
is the union of an interval of length ε

k(k+1)
close to −1/2 and the interval of length 1 − ε

k(k+1)
with barycenter close

to k.
In R

2 the set {k}×Ak,1 is part of the support of π ′
n. It has mass ε/k(k + 1) and distance to sptπn greater than k/2

(for the �1 norm ‖(x, y)‖ = |x| + |y|. It is in fact close to k). If follows

WR
2(

πn,π
′
n

)
>

n−1∑
k=1

ε

2(k + 1)
= 1

2

(
n∑

k=2

1

k

)
max

(
W

(
μn,μ

′
n

)
,W

(
νn, ν

′
n

))
.

Note that we can normalise in mass and space and get the same estimate for families of probability measures
close to λ[0,1]. After this normalisation, the sequences πn and π ′

n both converge to (Id⊗ Id)#λ[0,1] but the ratios

WR
2
(πn,π

′
n)/W(μn,μ

′
n) and WR

2
(πn,π

′
n)/W(νn, ν

′
n) go to infinity faster than ln(n)/2. This makes it impossible to

find an estimate like Corollary 2.32 for the Kantorovich distance in place of Z.



Stability of shadows and curtain couplings 1843

References

[1] M. Beiglböck, P. Henry-Labordère and F. Penkner. Model-independent bounds for option prices – A mass transport approach. Finance Stoch.
17 (3) (2013) 477–501. MR3066985

[2] M. Beiglböck and N. Juillet. On a problem of optimal transport under marginal martingale constraints. Ann. Probab. 44 (1) (2016) 42–106.
MR3456332

[3] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley,
New York, 1999. MR1700749

[4] A. Galichon, P. Henry-Labordère and N. Touzi. A stochastic control approach to no-arbitrage bounds given marginals, with an application to
lookback options. Ann. Appl. Probab. 24 (1) (2014) 312–336. MR3161649

[5] P. Henry-Labordère and N. Touzi. An explicit martingale version of Brenier’s theorem. Finance Stoch. 20 (3) (2016) 635–668. MR3519164
[6] F. Hirsch and B. Roynette. A new proof of Kellerer’s theorem. ESAIM Probab. Stat. 16 (2012) 48–60. MR2911021
[7] D. Hobson and A. Neuberger. Robust bounds for forward start options. Math. Finance 22 (1) (2012) 31–56. MR2881879
[8] H. G. Kellerer. Markov-komposition und eine anwendung auf martingale. Math. Ann. 198 (1972) 99–122. MR0356250
[9] T. Lindvall. On Strassen’s theorem on stochastic domination. Electron. Commun. Probab. 4 (1999) 51–59 (electronic). MR1711599

[10] V. Strassen. The existence of probability measures with given marginals. Ann. Math. Stat. 36 (1965) 423–439. MR0177430
[11] H. Thorisson. Coupling, Stationarity, and Regeneration. Probability and Its Applications (New York). Springer, New York, 2000. MR1741181
[12] C. Villani. Topics in Optimal Transportation. Graduate Studies in Mathematics 58. Amer. Math. Soc., Providence, RI, 2003. MR1964483
[13] C. Villani. Optimal Transport. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin, 2009. MR2459454

http://www.ams.org/mathscinet-getitem?mr=3066985
http://www.ams.org/mathscinet-getitem?mr=3456332
http://www.ams.org/mathscinet-getitem?mr=1700749
http://www.ams.org/mathscinet-getitem?mr=3161649
http://www.ams.org/mathscinet-getitem?mr=3519164
http://www.ams.org/mathscinet-getitem?mr=2911021
http://www.ams.org/mathscinet-getitem?mr=2881879
http://www.ams.org/mathscinet-getitem?mr=0356250
http://www.ams.org/mathscinet-getitem?mr=1711599
http://www.ams.org/mathscinet-getitem?mr=0177430
http://www.ams.org/mathscinet-getitem?mr=1741181
http://www.ams.org/mathscinet-getitem?mr=1964483
http://www.ams.org/mathscinet-getitem?mr=2459454

	Introduction
	Reminders about the stochastic and convex orders
	Seven partial orders on M
	Complements on the stochastic order
	Complements on the convex order
	Strassen-type theorems

	Lipschitz continuity of the curtain coupling with respect to its marginals
	Deﬁnitions of the shadows and the curtain coupling
	Qualitative continuity of the curtain coupling map
	Lipschitz continuity of the shadow, quantitative estimates
	Up and down measures
	Semimetric Z on the space of transport plans
	Variations in µ
	Variations in nu and conclusion


	References

