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Abstract

Stability of the value function and the set of minimizers w.r.t. the given data is a desir-
able feature of optimal transport problems. For the classical Kantorovich transport
problem, stability is satisfied under mild assumptions and in general frameworks such
as the one of Polish spaces. However, for the martingale transport problem several
works based on different strategies established stability results for R only. We show
that the restriction to dimension d = 1 is not accidental by presenting a sequence
of marginal distributions on R2 for which the martingale optimal transport problem
is neither stable w.r.t. the value nor the set of minimizers. Our construction adapts
to any dimension d ≥ 2. For d ≥ 2 it also provides a contradiction to the martingale
Wasserstein inequality established by Jourdain and Margheriti in d = 1.
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1 Introduction

For two probability measures µ and ν on Rd let Π(µ, ν) denote the set of all couplings
between µ and ν, i.e. the set of all probability measures on Rd ×Rd which have marginal
distributions µ and ν. Let c : Rd ×Rd → R be measurable and integrable with respect to
the elements of Π(µ, ν). The classical optimal transport problem is given by

Vc(µ, ν) = inf
π∈Π(µ,ν)

∫
Rd×Rd

c(x, y) dπ(x, y). (OT)

For the cost function c1(x, y) := ‖y − x‖ (where ‖ · ‖ is the Euclidean norm) the 1-
Wasserstein distanceW1 := Vc1 is a metric on P1(Rd), the space of probability measures
µ that satisfy

∫
Rd
‖x‖dµ(x) <∞.

Two probability measures µ, ν ∈ P1(Rd) are said to be in convex order, denoted by
µ ≤c ν, if

∫
Rd
ϕdµ ≤

∫
Rd
ϕdν for all convex functions ϕ ∈ L1(ν). If µ ≤c ν, Strassen’s
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Instability of martingale optimal transport

theorem yields that there exists at least one martingale coupling between µ and ν. A
martingale coupling is a coupling π ∈ Π(µ, ν) for which there exists a disintegration
(πx)x∈Rd such that ∫

R

y dπx(y) = x for µ-a.e. x ∈ Rd. (1.1)

If µ ≤c ν, the martingale optimal transport problem is given by

VMc (µ, ν) = inf
π∈ΠM (µ,ν)

∫
Rd×Rd

c(x, y) dπ(x, y) (MOT)

where ΠM (µ, ν) denotes the set of all martingale couplings between µ and ν.

Stability in d = 1

Let us recall two reasons why stability results are crucial from an applied perspective.
Firstly, they enable the strategy of approximating the problem by a discretized problem
or by any other that can rapidly be solved computationally (cf. [1, 14]). Secondly, any
application to noisy data would require stability for the results to be meaningful. In rela-
tion with (MOT), this discussion is motivated by its connection to (robust) mathematical
finance (cf. [4, 12]).

Let µ, ν ∈ P1(R) with µ ≤c ν, and (µn)n∈N and (νn)n∈N be sequences of probability
measures on R with finite first moment such that limn→∞W1(µn, µ) = 0, limn→∞W1(νn,

ν) = 0 and µn ≤c νn for all n ∈ N. The following stability results are available:

(S1) Accumulation Points of Minimizers: Let c be a continuous cost function which is
sufficiently integrable (e.g. |c(x, y)| ≤ A(1 + |x|+ |y|)) and let πn be a minimizer of
the (MOT) problem between µn and νn for all n ∈ N. Any weak accumulation point
of (πn)n∈N is a minimizer of (MOT) between µ and ν.

(S2) Continuity of the Value: Let c be a continuous cost function which is sufficiently
integrable (e.g. |c(x, y)| ≤ A(1 + |x|+ |y|)). There holds

lim
n→∞

VMc (µn, νn) = VMc (µ, ν).

(S3) Approximation: For all π ∈ ΠM (µ, ν) there exists a sequence (πn)n∈N of martingale
couplings between µn and νn that converges weakly to π.

This constitutes the heart of the theory of stability recently consolidated for the
martingale transport problem on the real line. Before we go more into the details of the
literature let us stress that with (S3) any minimizer can be approximated by a sequence
of martingale transport with prescribed marginals. Therefore, under mild assumptions
(S3) implies (S2). Moreover, due to the tightness of

⋃
n∈N ΠM (µn, νn), (S2) implies (S1).

Early versions of (S1) and (S2) for special classes of cost-functions were obtained by
Juillet [16] and later by Guo and Obloj [11]. The general version of (S1) and (S2) was first
shown by Backhoff-Veraguas and Pammer [2, Theorem 1.1, Corollary 1.2] and Wiesel [22,
Theorem 2.9]. Only very recently, Beiglböck, Jourdain, Margheriti and Pammer [3] have
proven (S3). We want to stress that (S1), (S2) and (S3) are given in a minimal formulation
and that in the articles some aspects of the results are notably stronger. For instance,
the cost function c in (S1) and (S2) can be replaced by a uniformly converging sequence
(cn)n∈N [2]. Moreover, it is an important achievement that on top of weak convergence
we have convergence w.r.t. (an extension of) the adapted Wasserstein metric for the
approximation in (S3) [3] and for the convergence in (S1) [6], see also [22]. Finally, these
stability results also hold for weak martingale optimal transport which is an extension of
(MOT) w.r.t. the structure of the cost function (cf. [6, Theorem 2.6]). For further details
we invite the interested reader to directly consult the articles.
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Instability of martingale optimal transport

The martingale Wasserstein inequality introduced by Jourdain and Margheriti in [13,
Theorem 2.12] belongs also to the context of stability and approximation and it appears
for example as the important last step in the proof of (S3) in [3]. In dimension d = 1

there exists a constant C > 0 independent of µ and ν such that

M1(µ, ν) ≤ CW1(µ, ν). (MWI)

where M1(µ, ν) is the value of the (MOT) problem between µ and ν w.r.t. the cost
function ‖x − y‖. Moreover, they proved that C = 2 is sharp. For their proof Jourdain
and Margheriti introduce a family of martingale couplings π ∈ ΠM (µ, ν) that satisfy∫
R×R |x − y|dπ(x, y) ≤ 2W1(µ, ν) (including the particularly notable inverse transform

martingale coupling).

Instability in d ≥ 2

The stability of (OT) (and its extension to weak optimal transport [6, Theorem 2.5]) is
independent of the dimension. However, Beiglböck et al. had to restrict their stability
theorem for (weak) (MOT) in the critical step to dimension d = 1 (cf. [6, Theorem 2.6
(b’)]). Similarly, in dimension d ≥ 2, Jourdain and Margheriti could only extend the
martingale Wasserstein inequality for product measures and for measures in relation
through a homothetic transformation, see [13, Section 3]. The difficulties in expanding
these stability results to higher dimensions are not of technical nature but a consequence
of instability of (MOT) in higher dimensions without further assumptions.

In the following we construct a sequence of probability measures on R2 for which
(S1), (S2) and (S3) do not hold. Moreover, we provide an example that shows that the
inequality (MWI) does not hold in dimension d = 2 for any fixed constant C > 0 without
further assumptions. Since one can embed this example into Rd for any d ≥ 3 by the
map ι : (x, y) 7→ (x, y, 0, ..., 0), these results also fail in any higher dimension.

We denote by Pθ the one step probability kernel of the simple random walk along the
line lθ that makes an angle θ ∈

[
0, π2

]
with the x-axis. More precisely:

Pθ : R2 3 (x1, x2) 7→ 1

2

(
δ(x1,x2)+(cos(θ),sin(θ)) + δ(x1,x2)−(cos(θ),sin(θ))

)
∈ P1(R2).

For m,n ∈ N≥1 we define two probability measures on R2 by

µm :=

m∑
i=1

1

m
δ(i,0) and νm,n := µmP π

2n

where µmP π
2n

denotes the application of the kernel P π
2n

to µm. Figure 1 illustrates
(µ2, ν2,2) and (µ3, ν3,3).

Since for any convex function ϕ : R2 → R Jensen’s inequality yields∫
R2

ϕdνm,n =

∫
R2

(∫
R2

ϕdP π
2n

(x, ·)
)

dµm(x) ≥
∫
R2

ϕdµm,

we have µm ≤c νm,n for all m,n ∈ N≥1.

Lemma 1.1. The martingale coupling πm,n := µm(Id, P π
2n

) is the only martingale cou-
pling between µm and νm,n for all m,n ∈ N≥1. (Here µm(Id, P π

2n
) denotes the application

of the kernel (Id, P π
2n

) to µm.)

For every m ≥ 2 the sequence (µm, νm,n)n∈N serves as a counterexample to analogue
versions of (S1), (S2) and (S3) in dimension d = 2. The crucial observation is that
whereas ΠM (µm, νm,n) consists of exactly one element for all n ∈ N by Lemma 1.1, there
are infinitely many different martingale couplings between µm and the limit of (νm,n)n∈N.
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m = n = 2 y
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m = n = 3

Figure 1: The construction for m = n = 2 and m = n = 3. The red circles indicate the
Dirac measures of µm each with mass 1

m and the blue circles indicate the Dirac measures
of νm,n each with mass 1

2m .

Proposition 1.2. Let m ≥ 2. There holds limn→∞W1(νm,n, µmP0) = 0.
Moreover, we have the following:

(i) Let c1(x, y) := ‖y− x‖ for all x, y ∈ R2 and πm,n := µm(Id, P π
2n

) for all n ∈ N≥1. The
martingale couplings πm,n are minimizers of the (MOT) problem between µm and
νm,n w.r.t. c1. Moreover, (πm,n)n∈N is weakly convergent but the limit is not an
optimizer of (MOT) w.r.t. c1 between (its marginals) µm and µmP0.

(ii) Let c1 be defined as in (i). There holds

lim
n→∞

VMc1 (µm, νm,n) = 1 > VMc1 (µm, µmP0).

(iii) The set ΠM (µm, µmP0)\{µm(Id, P0)} is non empty and no element in this set can be
approximated by a weakly convergent sequence (πm,n)n∈N of martingale couplings
πm,n ∈ ΠM (µm, νm,n).

The sequence (µn, νn,n)n∈N shows that there cannot exist a constant C > 0 for which
the inequality (MWI) holds in dimension d = 2.

Proposition 1.3. There holds

lim
n→∞

M1(µn, νn,n)

W1(µn, νn,n)
= +∞.

Remark 1.4. The theory of MOT in dimension two and further is also challenging in
other aspects. For instance, the concept of irreducible components and convex paving
can be directly reduced to the study of potential functions in dimension d = 1, whereas
there are at least three different advanced approaches in dimension d ≥ 2 (cf. [10, 8, 20]).
On the level of processes we would like to remind the reader that a higher dimensional
version of Kellerer’s theorem [18, Theorem 3] is still not proved or disproved. One
major obstacle is that the one-dimensional proof via Lipschitz-Markov kernels cannot be
extrapolated, see [15, Section 2.2] where a method similar to ours is used.

2 Proofs

We denote by f#µ the push-forward of the measure µ under the function f .

Proof of Lemma 1.1. 1 Let m,n ≥ 2 be integers and θn := π
2n . We denote by Lθn the

projection parallel to the line lθn = {(x1, tan(θn)x1) : x1 ∈ R} onto the x-axis, i.e.

Lθn : R2 3 (x1, x2) 7→ x1 − tan(θn)−1x2 ∈ R.
1As suggested by the referee an alternative simple proof is a proof by induction starting from right-most

atom of µm. However, this argument can not be adapted to the situation of Remark 3.2.
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Moreover, by setting ν̃ := (Lθn)#νm,n and µ̃ := (Lθn)#µm one has

ν̃ =
1

m

m∑
i=1

δi = µ̃. (2.1)

Let π ∈ ΠM (µm, νm,n). As Lθn is a linear map, π̃ := (Lθn ⊗ Lθn)#π is a martingale
coupling of µ̃ and ν̃. Indeed, for all ϕ ∈ Cb(R2) there holds∫

R2

ϕ(x)(y − x) dπ̃(x) = Lθn

(∫
R2

ϕ(Lθn(x))(y − x) dπ(x)

)
= 0

and this property is equivalent to π̃ being a martingale coupling. Jensen’s inequality in
conjunction with (2.1) yields∫

R

x2 dµ̃(x) ≤
∫
R

(∫
R

y2 dπ̃x(y)

)
dµ̃(x) =

∫
R

y2 dν̃(y) =

∫
R

x2 dµ̃(x)

where (π̃x)x∈R is a disintegration of π̃ that satisfies (1.1). Since the square is a strictly
convex function, there holds

∫
R
y2 dπ̃x = x2 if and only if π̃x = δx. Thus, π̃ = µ̃(Id, Id) and

we obtain

x1 = Lθn(x1, x2) = Lθn(y1, y2) for π-a.e. ((x1, x2), (y1, y2)) ∈ R2 ×R2

because supp(µm) ⊂ R×{0}. Hence, the martingale transport plan π is only transporting
along the lines parallel to lθn . Since there are exactly two points in the support of νm,n
that lie on the same line, and we are looking for a martingale coupling, we have

π = µm(Id, Pθn).

Lemma 2.1. For all m ∈ N \ {0} and θ ∈
[
0, π2

]
one has

W1(µmP0, µmPθ) ≤ θ.

Proof. The inequality consists merely of a comparison of angle and chord. Alternatively,
for all m ∈ N and θ ∈

[
0, π2

]
we directly compute

W1(µmP0, µmPθ) ≤
∫
R2

W1(δxP0, δxPθ) dµm(x)

= |(sin(θ), cos(θ)− 1)| =
√

2(1− cos(θ)) = 2 sin(θ/2) ≤ θ.

Proof of Proposition 1.2. Let m ≥ 2. By Lemma 2.1, we know

lim
n→∞

W1(νm,n, µmP0) = lim
n→∞

W1(µmP π
2n
, µmP0) = 0.

Moreover, for all n ∈ N Lemma 1.1 yields that πm,n := µm(Id, P π
2n

) is the only martingale
coupling between µm and νm,n and therefore automatically the unique minimizer of the
(MOT) problem between these two marginals w.r.t. to any cost function. The sequence
(πm,n)n∈N converges weakly to πm := µm(Id, P0) ∈ ΠM (µm, µmP0). Note that

π′m :=
1

2m

(
δ((1,0),(1,0)) + 2

m−1∑
i=2

δ((i,0),(i,0)) + δ((m,0),(m,0))

)

+
1

2m(m+ 1)

(
mδ((1,0),(0,0)) + δ((1,0),(m+1,0)) + δ((m,0),(0,0)) +mδ((m,0),(m+1,0))

)
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is a martingale coupling between µm and µmP0 = µm − 1
m

(
δ(1,0)+δ(m,0)

2 − δ(0,0)+δ(m+1,0)

2

)
different from πm where only the mass not shared by µm and µmP0 is moved.

Item (i): Since πm is the weak limit of the sequence (πm,n)n∈N, it is the only accumu-
lation point. But as we see below in (ii), πm is not the minimizer of the (MOT) problem
between µm and µmP0 w.r.t. c1.

Item (ii): There holds

lim
n→∞

VMc1 (µm, νm,n) = lim
n→∞

∫
R2×R2

‖x− y‖ dπm,n = 1

>
2

m+ 1
=

∫
R2×R2

‖x− y‖ dπ′ ≥ VMc1 (µm, µmP0).

In fact, according to Lim’s result [19, Theorem 2.4], under an optimal martingale
transport w.r.t. c1 the shared mass between the marginal distribution is not moving.
Since π′m is the unique martingale transport between µm and µmP0 with this property, it
is the minimizer of this (MOT) problem and VMc1 (µm, µmP0) = 2

m+1 .
Item (iii): Since π is the weak limit of the solitary elements of ΠM (µm, νm,n), no

element of ΠM (µm, µmP0) \ {µm(Id, P0)} can be approximated and π′m is an element of
this set.

Proof of Proposition 1.3. Let n ∈ N. By Lemma 1.1, µn(Id, P π
2n

) is the only martingale
coupling between µn and νn,n. Thus,

M1(µn, νn,n) = 1.

SinceW1 is a metric on P1(R2), the triangle inequality yields

W1(µn, νn,n) ≤ W1(µn, µnP
0) +W1(µnP

0, νn,n).

We can easily compute

µnP
0 =

1

2n

(
n∑
i=1

δ(i−1,0) +

n∑
i=1

δ(i+1,0)

)

and therefore W1(µn, µnP
0) = 1

n . By Lemma 2.1, there holds W1(µnP
0, νn,n) ≤ π

2n .
Hence, we obtain

lim
n→∞

M1(µn, νn,n)

W1(µn, νn,n)
≥ lim
n→∞

1
1
n + π

2n

= +∞.

3 Additional remarks

Remark 3.1 (Duality). Let m,n ≥ 2. Recall that by their definitions the measures µm
and νm,n are concentrated on the union of m lines parallel to lθn and going through (i, 0),
i ∈ {1, . . . ,m}. As in the proof of Lemma 1.1 we denote by Lθn the linear map that maps
the points of the i-th line to the integer i. We define three functions fn, gn : R2 → R2 and
hn : R2 → R2 by

fn(x) = (Lθn(x))2, gn(y) = 1− (Lθn(y))2, hn(x) = 2Lθn(x)wn

where wn ∈ R2 represents Lθn in the sense Lθn(x) = 〈wn, x〉 for all x ∈ R2. For all
x, y ∈ R2 we have

fn(x) + gn(y) + 〈hn(x), y − x〉 = (Lθn(x))2 + 1− (Lθn(y))2 + 2Lθn(x) (Lθn(y)− Lθn(x))

= 1− (Lθn(y)− Lθn(x))
2
.
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Since the measures µm and νm,n are concentrated on the union of the m parallel lines,
for µm ⊗ νm,n-a.e. (x, y) ∈ R2 we have either (Lθn(y)− Lθn(x))

2 ≥ 1 if x and y are on
different lines or |y − x| = 1 if they are on the same line. Therefore,

fn(x) + gn(y) + 〈hn(x), y − x〉 ≤ |y − x|, µm ⊗ νm,n-a.e. (3.1)

Furthermore, we know∫
R2

fn dµm +

∫
R2

g dνm,n = 1 +

∫
R2

(Lθn(x))2dµm(x)−
∫
R2

(Lθn(y))2dνm,n(y)

= 1 = VMc1 (µm, νm,n), (3.2)

i.e. the triple (fn, gn, hn) is an optimizer to the martingale dual problem in the martingale
sense [4, 10].2 As a dual counterpart of the instability, this triple (that depends on n)
does not converge to an admissible triple as n goes to infinity. In fact, such a limit triple
would impose a lower bound to the primal problem that is too large. Outside of the
first axis the limit does not exist (in particular, it is impossible to project to the first axis
with a map Lθ where angle θ is 0). On the first axis the pointwise limit3 of (fn, gn, hn) is
given by (x2

1, 1− y2
1 , 2x1). This triple does not satisfy (3.1) for x = y whereas this latter is

possible at the limit because the supports of µm and µmP0 collide.
A particular aspect of martingale transport duality is pointwise duality in the quasi-

sure sense over the set of martingale transport plans as discovered in [5] (see also [10]
and the preprint [7] for the multidimensional case). Since in our example this set is
reduced to the single transport plan πm,n := µm(Id, P π

2n
), one can easily conclude with

the existence of plenty of dual maximizers (still in the quasi-sure sense) for instance
(fn(x), gn(y), hn(x)) = (0, 1, (0, 0)), or (fn(x), gn(y), hn(x)) = (fn(x), fn(x) + 1, (0, 0)) πm,n-
a.e. Again going to the limit does not provide µm and µmP0 with admissible triples since
the supports of νm,n and µm collide.

Remark 3.2 (Variations). Our construction may appear somewhat degenerate since µm
is discrete and supported on a lower dimensional subspace of R2. Moreover the number
of irreducible components (recall Remark 1.4 and the references therein) is not the same
in the sequence and for the limit measures. However, it is not particularly difficult to
adapt the present construction with new measures that appear more general but yield
the same result:

(i) One could replace the rows of Dirac measures by uniform measures on parallelo-
grams. More precisely, we could set

µ̃m,n := UnifFm,n and ν̃m,n :=
1

2

(
UnifF+

m,n
+ UnifF−

m,n

)
where Fm denotes the parallelogram spanned by the points

−vn, −vn + (m, 0), vn + (m, 0) and vn

with vn := 1
3

(
cos
(
π
2n

)
, sin

(
π
2n

))
∈ R2 and F±m,n is the translation of this paral-

lelogram by ±3vn (cf. Figure 2). By the same argument as in Lemma 1.1, any
martingale coupling between µ̃m,n and ν̃m,n can only transport along lines par-
allel to {(x, tan

(
π
2n

)
x) : x ∈ R}. In contrast to the situation in Lemma 1.1, the

2To be completely rigorous with respect to the statement in the referred papers, it seems that Estimate (3.1)
not only has to be satisfied almost everywhere but really for every (x, y) ∈ R2. This can be done by replacing
fn and gn by functions f̃n, g̃n of the same equivalence class defined by f̃n := fn − 1 and g̃n(y) := gn − 1
outside the support of µm and νm,n respectively. Of course (3.2) is still true with the modified functions.

3In fact hn does not converge, but interpreted as a linear form and restricted to the first axis we find the
limit x1 7→ 2x1.
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x

m = n = 2 y
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m = n = 3

Figure 2: The construction in Remark 3.2 (i) for m = n = 2 and m = n = 3. The red area
is the support of µ̃m,n and the blue area the supports of ν̃m,n.

martingale transport along one of these parallel lines is no longer unique but
every π ∈ ΠM (µ̃m,n, ν̃m,n) satisfies π

(
|x− y| < 1

3

)
= 0 for all m,n ∈ N because

the supports are disjoint. This restriction carries over to any weak accumulation
point of those martingale couplings and is sufficient to show analogous versions of
Proposition 1.2 and Proposition 1.3.

(ii) One could replace µm and νm,n by

µ̃m := (1− ε)µm + εγ and ν̃m,n := (1− ε)νm,n + εγ

where ε ∈ (0, 1) and γ is a probability measure with full support (e.g. a standard
normal distribution). There holds W1(µ̃m, ν̃m,n) = (1 − ε)W1(µm, νm,n) since W1

derives of the Kantorovich-Rubinstein norm [17] (alternatively see [21, Bib. Notes
of Ch.6 ] or [9, §*11.8]) andM1(µ̃m, ν̃m,n) = (1− ε)M1(µm, νm,n) by the result of
Lim [19, Theorem 2.4].

(iii) In order to show that our construction is not influenced by the number of irreducible
components (m components in the sequence and 1 at the limit) let us introduce for
m = 2 the measures

µ̃ := µ2 and ν̃n(ε) := (1− ε)ν2,n + εκ

where ε ∈ [0, 1] and κ := 1
2 (δ(−1,0) + δ(4,0)). We first sketch how we can build a

sequence from these measures that violates (S2) and then we look at the irreducible
components. Since µ̃ ≤c κ, for every sequence (εn)n∈N≥1

with εn ∈ [0, 1], we have
µ̃n ≤c ν̃n(εn) for all n ∈ N. Moreover if (εn)n∈N≥1

tends to zero we have also
W1(ν̃n(εn), µ2P0) → 0 for n → ∞. Note, for n ≥ 2 fixed, a martingale transport
πn(ε) between µ̃ = µ2 and ν̃n(ε) parameterized by ε must converge to the unique
martingale optimal transport between µ̃ and ν2,n when ε→ 0 (this is a consequence
of Prokhorov’s theorem). Paradoxically, this observation amounts in a stability
result that allows us to construct a non-stable sequence: for every n ≥ 1 we can
set εn small enough to satisfy |M1(µ2, ν2,n)−M1(µ̃, ν̃n(εn))| ≤ 1/n (and εn ≤ 1/n)
and therefore we obtain with Proposition 1.2(ii)

lim
n→∞

M1(µ̃, ν̃n(εn)) = lim
n→∞

M1(µ2, ν2,n) >M1(µ2, µ2P0) =M1(µ̃, µ2P0).

Hence, we have a further example that shows that (S2) is in general not satisfied
in dimension d ≥ 2. Next, it can be proved with a graphic representation of the
measures and a few geometric observations that if πn is any martingale transport
plan between µ̃ and ν̃n(εn) the convex hull C1 of the mass coming from the point
(1, 0) intersects in a two dimensional set the convex hull C2 of the mass coming
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from the point (2, 0). As a consequence there is a unique irreducible component for
πn (or the pair (µ̃, ν̃n(εn))) for all definitions of this concept in [10, 8, 20].

Remark 3.3. Finally, we would like to point out that Propositions 1.2 and 1.3 and their
proofs are not depending on the choice of the Euclidean norm while defining c1.
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