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Abstract

In this paper, we give an alternative proof of the fact that, when compounding a
nonnegative probability distribution, convex ordering between the distributions of
the number of summands implies convex ordering between the resulting compound
distributions. Although this is a classical textbook result in risk theory, our proof
exhibits a concrete coupling between the compound distributions being compared,
using the representation of one-period discrete martingale laws as a mixture of the
corresponding extremal measures.
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1 Introduction

Let us first recall the definition of convex ordering: given two real-valued integrable
random variables Y and Z, we say that Y ≺cx Z if, for any convex function f , the
inequality Ef(Y ) ≤ Ef(Z) holds. Moreover, Strassen’s condition ([17]) for convex
ordering states that Y ≺cx Z if and only if there exists a pair of random variables (A,B)

such that
A

d
= Y, B

d
= Z, and A = E(B|σ(A)) a.s. (1.1)

We refer to e.g. [16, 13] for a detailed treatment of this and related notions.
Now consider an i.i.d. sequence of nonnegative random variables X = (Xi)i≥1, and

two integer-valued random variables M,N , independent from the sequence X . Assume
that E(X1) < +∞, E(M) < +∞, E(N) < +∞, and that a comparison between M and
N holds with respect to the convex ordering: M ≺cx N . We then have the following
comparison between the compound variables X1 + · · · + XM and X1 + · · · + XN with
respect to the convex ordering:

X1 + · · ·+XM ≺cx X1 + · · ·+XN . (1.2)

This is a classical result (see e.g. Theorem 4.A.9 in [16] or Theorem 4.3.6 in [13])1,
useful in the context of risk theory (see e.g. [10], chap. 7) where its interpretation is
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of random variables instead of just one, so that (1.2) appears as a special case of these results. We refer to
Section 4.3 for a discussion of how the more general case can be deduced from (1.2).
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that compounding with a riskier frequency distribution leads to a riskier aggregated loss
distribution.

The proof given in [16] is analytical in nature, and consists in showing that, given
a non-decreasing convex function f : [0,+∞[→ R, the sequence (un)n≥0 defined by
un = Ef(X1 + · · · +Xn) satisfies, for all n ≥ 0, the condition un+2 − un+1 ≥ un+1 − un
(provided that un+2, un+1, un have a finite value)2. Here, we give an alternative proof of
(1.2), based on a coupling between the two random variables being compared, which
provides an explicit realization of Strassen’s condition: we construct a pair of random
variables (A,B) such that

A
d
= X1 + · · ·+XM , B

d
= X1 + · · ·+XN , and A = E(B|σ(A)) a.s. (1.3)

Our proof relies a representation result which we call a diatomic representation of
convex ordering, stated as Theorem 2.1 in Section 2, where we review several approaches
for proving the existence of this representation, including an explicit algorithm in the
case of discrete distributions. Section 3 contains the coupling construction leading to
(1.3) and the proof of (1.2). Finally, in Section 4, we discuss various extensions of these
results.

2 Diatomic representation

Given two real numbers x < y, we define, for all z the normalized barycentric
coordinates:

αx,y(z) =
y − z
y − x

and βx,y(z) = 1− αx,y(z) = z − x
y − x

.

In the case x = y, we extend the above definition by setting αx,y(z) = 1 and βx,y(z) = 0.
Whenever x ≤ z ≤ y, both αx,y(z) and βx,y(z) lie in the interval [0, 1], and z can be written
as the convex combination of x and y:

z = αx,y(z) · x+ βx,y(z) · y.

Theorem 2.1. Given two probability distributions µ, ν on R possessing a finite expecta-
tion, the comparison µ ≺cx ν holds if and only if there exists a triple of random variables
(V−, U, V+) defined on the same probability space and such that:

U ∈ [V−, V+] (2.1)

Law(U) = µ (2.2)

ν = E
[
αV−,V+(U) · δV− + βV−,V+(U) · δV+

]
(2.3)

We call such a triple (V−, U, V+) a diatomic representation of the stochastic ordering
µ ≺cx ν.

A more concrete statement of (2.3) is that Law(V ) = ν, where V is a random variable
whose conditional distribution with respect to V−, U, V+ is given by:

V =

{
V− with probability αV−,V+(U)

V+ with probability βV−,V+(U)

Theorem 2.1 may not have been stated under this specific form in the mathematical
literature, but its content is certainly not new. In the following subsections we review
several ways of proving this result.

2The proof given in [13] is similar, using functions of the special form f(x) = (x− t)+.
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2.1 Proof of Theorem 2.1 via Choquet’s and Douglas’ theorems (for compactly
supported measures ν)

We prove here the result only in the case of measures µ ≺cx ν concentrated on some
closed interval K.

Consider the following space of measures on R2:

SK =

{
π ∈M+(K

2) : ∀a ∈ R, ∀b ∈ Cb(R),
∫∫

a+ b(u).(v − u)dπ(u, v) = a

}
.

HereM+(K
2) is the space of finite positive Borel measures onR2 with support contained

in K2, and Cb(R) the space of real-valued continuous and bounded functions on R. In
other words, denoting by F the space of functions fa,b : (u, v) ∈ R2 → a+ b(u)(v− u), the
above definition reads:

SK = {π ∈M+(K
2) : ∀fa,b ∈ F,

∫∫
fa,bdπ = a}.

It turns out that SK is a non-empty space of probability measures, known as martingale
measures in the literature since for (X1, X2) ∼ π ∈ SK , the process (Xi)i=1,2 is a
martingale on its natural filtration.

Our task amounts to proving that a measure π ∈ SK is represented as a mixture of
‘triplet’ measures of the form δz⊗[αδx+βδy], where z = αx+βy and α, β are nonnegative
and satisfy α+ β = 1.

We admit without proof that SK is convex and compact for the weak topology. Cho-
quet’s Theorem (see [3] or e.g. [14]) then implies that every measure in SK can be
represented as a mixture of extremal measures in SK . So we shall be done as soon as
we can prove that the extremal measures in SK are triplet measures concentrated on
SK . Let η be such an extremal measure and µ, ν its marginals. We aim at proving that µ
is supported on a single point and that ν is supported on at most two points. Striving for
a contradiction suppose that µ is not a Dirac measure. Hence, there exists a Borel set E
such that µ(E) /∈ {0, 1}. We consider the L1(η) distance between f : (u, v)→ 1E(u) and
the functions fa,b ∈ F . Letting (U, V ) be distributed according to η we find that3

‖f − fa,b‖L1(η) ≥ E
(∣∣∣E(f(U, V )− fa,b(U, V )|U)

∣∣∣)
= E

(∣∣∣1E(U)− a
∣∣∣)

= P(U ∈ E)|1− a|+ P(U /∈ E)|a|
≥ min(P(U ∈ E),P(U /∈ E)).

Note that this lower bounds only depends on f . We have thus proved that F is not
dense in L1(η). According to Douglas’s theorem [4] (see also [15, Chapter V]) this in
contradiction with the fact that η is extremal. Thus η is of type δu0

⊗ ν where u0 is the
barycenter of ν, i.e

∫
v dν(v) = u0. Next, again striving for a contradiction suppose that

there exists a partition (Ai)i∈{1,2,3} of R such that ν(Ai) > 0 holds for every i. From
Douglas’s Theorem again the set F of functions is dense in L1(η). In particular any
function gc1,c2,c3 : (u, v) 7→

∑3
i=1 ci1Ai

(v) can be approximated in L1(η) by functions
fa,b. The linear map (c1, c2, c3) 7→ (

∫
A1
gc1,c2,c3 dη,

∫
A2
gc1,c2,c3 dη,

∫
A3
gc1,c2,c3 dη) is clearly

linear and onto. It follows that the linear map

(a, b) ∈ R2 7→
(∫

A1

fa,b dη,

∫
A2

fa,b dη,

∫
A3

fa,b dη

)
∈ R3

is onto as well, a contradiction. Therefore, extremal measures of SK are of type δz ⊗
[αδx + βδy] where z = αx+ βy, as it was required.

3To go from the first to the second line, we use the fact that E(fa,b(U, V )|U) = a a.s. since E(V | U) = U a.s.
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2.2 Proof of Theorem 2.1 via Strassen’s theorem (general case)

Another approach to proving Theorem 2.1 is to use Strassen’s theorem instead of
Choquet’s and Douglas’s theorems: there exists a kernel k : R → P(R) such that µ
almost surely ku = k(u) has mean u and it holds µ · k = ν. (Such kernels are known as
dilations or martingale kernels in the literature.) Hence the mixture with weight µ of the
measures δu ⊗ ku defines a probability measure π on R2 whose marginals are µ and ν.
To complete the proof, it remains to check that each measure ku can be represented as a
mixture of diatomic measures with mean u. This last fact is a classical step in the proof
of Skorokhod’s representation theorem (see e.g. [5, Theorem 8.1.1]): every probability
measure on R with mean u can be represented as a mixture of diatomic measures with
mean u. See [9, §5.1] for another approach.

Remark 2.2. The search for martingale kernels k : u 7→ ku is a key question in the field
of martingale optimal transport. The first completely canonical method seems to be the
left-curtain coupling by Beiglböck and Juillet [1] that is also of particular interest to us.
Not only is ku canonical but when µ is diffuse its kernels ku are automatically diatomic
(this also holds for the former coupling by Hobson and Neuberger [6] under more general
assumptions). This is not the case if µ possesses atoms. However a quantile version of
the left-curtain coupling is described in a second paper by the same authors [2] where
the martingale measure π directly appears as a mixture over the set [0, 1] of quantile
levels ω ∈ [0, 1] of diatomic kernels δzω ⊗ (αxω,yω (zω)δxω + βxω,yω (zω)δyω ) where zω is the
ω-quantile of µ. Note that the same can be said of the recent coupling by Jourdain and
Margheriti [8].

2.3 Algorithmic proof of Theorem 2.1 (for finitely supported µ, ν)

We now describe an explicit algorithmic construction, inspired by [1, 2], leading to a
diatomic decomposition in the case where both µ and ν are finitely supported probability
measures. This algorithm is used to produce the simulation shown in Fig. 1.

Let us write µ =
∑p
i=1 µ(ui)δui and ν =

∑q
j=1 ν(vj)δvj .

Initialization: µ∗ ← µ, ν∗ ← ν, θ∗ ← 1, T ← ∅

Loop: Repeat the following steps while θ∗ > 0

Pick a triple (vj−, ui, vj+) such that

a. ν∗(vj−) > 0, µ∗(ui) > 0, ν∗(vj+) > 0

b. vj− ≤ ui ≤ vj+
c. ν∗((vj−, vj+)) = 0

s← min (µ∗(ui), ν∗(vj−)/α
vj−,vj+(ui), ν∗(vj+)/β

vj−,vj+(ui)))

µ∗ ← µ∗ − sδui

ν∗ ← ν∗ − sαvj−,vj+(ui)δvj− − sβvj−,vj+(ui)δvj+
θ∗ ← θ∗ − s
T ← T ∪ {((vj−, ui, vj+), s)}

Result: return the set T

The probability distribution of (V−, U, V+) is then deduced from T as∑
(v−,u,v+,s)∈T

sδ(v−,u,v+).
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Figure 1: The figure shows 104 simulated pairs (A,B), with µ =
∑5
n=2

1
4δn and ν =

1
4δ1 +

1
4δ3 +

∑6
n=4

1
6δn, Law(Xi) = E (1), and the algorithm of Section 2.3 to produce the

diatomic decomposition.

The reason why the above algorithms stops lies in the fact that the transformation
performed on µ∗ and ν∗ keeps the comparison µ∗ ≺cx ν∗ valid throughout the execution
of the algorithm (see the proof of Lemma 2.8 in [1]), with µ∗ and ν∗ having equal
total mass. As a consequence, as long as µ∗ and ν∗ do not have zero total mass, the
comparaison µ∗ ≺cx ν∗ ensures that a triple (vj−, ui, vj+) satisfying conditions a.-b.-c.
exists. Finally, since at each step at least one of the three numbers ν∗(vj−), µ∗(ui), ν∗(vj+)
is set to zero, the total mass of both µ∗ and ν∗ must reach zero after a finite number of
steps.

Remark 2.3. If, in the loop part of the algorithm, one systematically choses the unique
triple (v−, u, v+) such that u is the leftmost point in the support of µ∗ (such a choice is
always possible, see the proof of Lemma 2.8 in [1]), the end-result of the algorithm is the
so-called left-curtain coupling.

3 Coupling construction

We now describe the coupling construction leading to our proof of (1.2). Consider
a triple (N−,M

′, N+) as in Theorem 2.1, with µ = Law(M) and ν = Law(N), and an
i.i.d. sequence X = (Xi)i≥1 independent from (N−,M

′, N+). For all integer k ≥ 1, we

let Sk =
∑k
i=1Xi, with the convention that S0 = 0. Finally, we define two σ-algebras

F = σ(M ′, N−, N+, SN− , SN+
) and G = σ(M ′, N−, N+, SM ′ , SN− , SN+

). Note that G =

F ∨ σ(SM ′).
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We start our construction by setting:

A = SM ′ . (3.1)

Next, we specify N ′ by the requirement that, conditional upon G, the distribution of N ′

is:
αSN− ,SN+ (A) · δN− + βSN− ,SN+ (A) · δN+

, (3.2)

and we let
B = SN ′ . (3.3)

Note that αSN− ,SN+ (A) and βSN− ,SN+ (A) do indeed lie in the interval [0, 1] thanks to the
assumption that the random variablesXi are nonnegative, so that SN− ≤ A = SM ′ ≤ SN+

,
since N− ≤M ′ ≤ N+.

We now proceed to checking that all three properties listed in (1.3) are satisfied
by the random variables A and B. From (3.1), it is immediate that A has the required
distribution. Moreover, from the definition of α and β, one has the identity

αSN− ,SN+ (A) · SN− + βSN− ,SN+ (A) · SN+
= A,

which rewrites as:
E [B|G] = A a.s.,

whence, taking the conditional expectation E(·|σ(A)) on both sides, and using the fact
that σ(A) ⊂ G since A = SM ′ is G-measurable,

E [B|σ(A)] = A a.s.,

as required by (1.3).

To conclude the proof, it remains to check that B
d
= SN . By construction, the

conditional distribution of N ′ given F can be written as:

E
[
αSN− ,SN+ (A)

∣∣∣ F] · δN− + E
[
βSN− ,SN+ (A)

∣∣∣ F] · δN+
. (3.4)

Now observe that, by symmetry, given integers n− ≤ m ≤ n+ such that n− < n+, we
have:

E
[
Sm − Sn−

∣∣∣σ(Sn− , Sn+)
]
=

m− n−
n+ − n−

(Sn+ − Sn−) a.s.,

from which we deduce that4

E
[
αSn− ,Sn+ (Sm)

∣∣∣ σ(Sn− , Sn+
)
]
= αn−,n+(m) a.s.

and
E
[
βSn− ,Sn+ (Sm)

∣∣∣ σ(Sn− , Sn+
)
]
= βn−,n+(m) a.s.

Since the sequence X = (Xi)i≥1 is independent from (N−,M
′, N+), the above identities

imply that

E
[
αSN− ,SN+ (SM ′)

∣∣∣ F] = αN−,N+(M ′) a.s.

and
E
[
βSN− ,SN+ (SM ′)

∣∣∣ F] = βN−,N+(M ′) a.s.

Using (3.4), we see that the conditional distribution of N ′ given F is none but:

αN−,N+(M ′) · δN− + βN−,N+(M ′) · δN+
, (3.5)

4In the case where n− = m = n+, these identities are still (obviously) valid.
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so that the conditional distribution of B = SN ′ given F is:

αN−,N+(M ′) · δSN−
+ βN−,N+(M ′) · δSN+

. (3.6)

Now let N ′′ denote a random variable independent from X = (Xi)i≥1 and whose
conditional distribution given σ(M ′, N−, N+) is precisely (3.5). From (2.3), we see that

N ′′
d
= N . Since both N ′′ and N are assumed to be independent from X = (Xi)i≥1, we

also have that SN ′′
d
= SN . Moreover, (3.6) coincides with the conditional distribution

of SN ′′ given σ(M ′, N−, N+,X ) (hence given F), so that, getting back to unconditional
distributions, we have that:

B = SN ′
d
= SN ′′

d
= SN ,

which concludes the proof.

4 Final remarks and extensions

4.1 Continuous time

We note that the coupling construction described in Section 3 can be extended in
continuous time. For instance, let N = (Nt)t≥0 be a standard Poisson process and
S ≺cx T nonnegative integrable random variables independent from N . Then one has
NS ≺cx NT , and it is straightforward to extend our approach to define a pair of random
variables (A,B) such that

A
d
= NS , B

d
= NT , and A = E(B|σ(A)) a.s. (4.1)

The same approach still works in exactly the same way if we consider an integrable
subordinator instead of a Poisson process.

4.2 Exchangeable random variables

If the sequence of random variables (Xi)i≥1 is assumed to be exchangeable instead
of i.i.d., the coupling construction described in Section 3 works in exactly the same
way. (The classical proof found in [16, 13] also works in this case.) Note that, in the
case of an infinite exchangeable sequence of random variables, one can directly deduce
(1.2) from the i.i.d. case, using the De Finetti representation of such a sequence as a
mixture of (distributions of) i.i.d. sequences, and the characterization of (1.2) through
the inequality

Ef(X1 + · · ·+XM ) ≤ Ef(X1 + · · ·+XN ) (4.2)

for all convex functions f . On the other hand, if M and N are assumed to have finite
support, say {0, 1, . . . , q}, and one considers a finite exchangeable sequence of random
variables X1, . . . , Xq, the extension of De Finetti’s theorem to this case (see [12, 7]) leads
in general to a signed mixture of i.i.d. sequences, so one cannot integrate the inequality
(4.2) with respect to the mixing measure in order to directly deduce (1.2).

4.3 Increasing convex ordering

Assume that a comparison between M and N holds with respect to the increasing
convex ordering5: M ≺icx N . We then have the following modified version of (1.2):

X1 + · · ·+XM ≺icx X1 + · · ·+XN . (4.3)

5The definition is similar to convex ordering, with the class of convex functions replaced by the class of
non-decreasing convex functions.
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To deduce (4.3) from (1.2), we note that the comparison M ≺icx N implies that
there exists an integer-valued6 random variable N0 such that M ≺st N0 and N0 ≺cx N ,
where ≺st denotes the usual stochastic ordering. Given an i.i.d. sequence X = (Xi)i≥1
independent from M,N0, N , the fact that the Xis are nonnegative random variables,
combined with M ≺st N0, yields the comparison X1 + · · ·+XM ≺st X1 + · · ·+XN0

. Then,
using (1.2), we deduce that X1 + · · ·+XN0

≺cx X1 + · · ·+XN , so that (4.3) is proved.
Now consider two sequences X = (Xi)i≥1 and Y = (Yi)i≥1 of i.i.d. nonnegative

random variables, and, in addition to M ≺icx N , assume that Xi ≺icx Yi. We then have the
following extension of (4.3):

X1 + · · ·+XM ≺icx Y1 + · · ·+ YN , (4.4)

which is a straightforward consequence of (4.3) and of the fact that the increasing convex
ordering is preserved by convolution.

4.4 Counterexample to (1.2) when the Xi are not positive random variables

We let M ≡ 1 and N ∼ 1
2 (δ0 + δ2), so that the condition M ≺cx N is satisfied. Then let

X1, X2 be i.i.d. random variables, independent fromN (andM ), withXi ∼ 1
2 (δ−1+δ1). We

find that SM ∼ 1
2 (δ−1+δ1), while SN ∼ 1

8 (δ−2+6δ0+δ2). Hence 1
2 = E(|SN |) < E(|SM |) = 1

so that SM ≺cx SN cannot hold.
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